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Summary. We discuss online strategies for visibility-based searching for an object
hidden behind a corner, using Kurt3D, a real autonomous mobile robot. This task
is closely related to a number of well-studied problems. Our robot uses a three-
dimensional laser scanner in a stop, scan, plan, go fashion for building a virtual
three-dimensional environment. Besides planning trajectories and avoiding obsta-
cles, Kurt3D is capable of identifying objects like a chair. We derive a practically
useful and asymptotically optimal strategy that guarantees a competitive ratio of 2,
which differs remarkably from the well-studied scenario without the need of stopping
for surveying the environment. Our strategy is used by Kurt3D, documented in a
separate video.
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1 Introduction

Visibility Problems. Visibility-based problems of surveying, guarding, or
searching have a long-standing tradition in the area of computational opti-
mization; they may very well be considered a field of their own. Using station-
ary positions for guarding a region is the well-known art gallery problem [15].
The watchman problem [3,18,19] asks for a short tour along which one mobile
guard can see the entire region. If the region is unknown in advance, we are
faced with the online watchman problem. For a simple polygon, Hoffmann et
al. [7] achieve a constant competitive ratio of 26.5, while Albers et al. [1] show
that no constant competitive factor exists for a region with holes, and un-
bounded aspect ratio. Kalyanasundaram and Pruhs [12] consider the problem
in graphs and give a competitive factor of 16.
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In the context of geometric searching, a crucial issue is the question of how
to look around a corner: Given a starting position, and a known distance to
a corner, how should one move in order to see a hidden object (or the other
part of the wall) as quickly as possible? This problem was solved by Icking
et al. [9, 10] who show that an optimal strategy can be characterized by a
differential equation that yields a competitive factor of 1.2121. . . , which is
optimal. Note that actually using this solution requires numerical evaluation.

An Autonomous Mobile Robot. From the practical side, our work
is motivated by an actual application in robotics: The Fraunhofer Institute
for Autonomous Intelligent Systems (AIS) has developed autonomous mobile
robots that can survey their environment by virtue of a high-resolution, 3D
laser scanner [17]. By merging several 3D scans acquired in a stop, scan, plan,
go fashion, the robot Kurt3D builds a virtual 3D environment that allows it
to navigate, avoid obstacles, and detect objects [14]. This makes the visibility
problems described above quite practical, as actually using good trajectories
is now possible and desirable.

However, while human mobile guards are generally assumed to have full
vision at all times, our autonomous robot has to stop and take some time
for taking a survey of its environment. This makes the objective function
(minimize total time to locate an object or explore a region) a sum of travel
time and scan time; a somewhat related problem is searching for an object on
a line in the presence of turn cost [5], which turns out to be a generalization of
the classical linear search problem. Somewhat surprisingly, scan cost (however
small it may be) causes a crucial difference to the well-studied case without
scan cost, even in the limit of infinitesimally small scan times.

Independent from our work, the problem of looking around a corner in
the presence of scan cost has been studied by Isler et al. [11], who described
two deterministic strategies achieving competitive ratios of 3.14 and 2.22, and
also considered a probabilistic framework dealing with prior knowledge about
the possible values of corners. We improve on these results with a different,
asymptotically optimal strategy, and prove a matching lower bound.

Other Related Work. Visbility-based navigation of robots involves a
variety of different aspects. For example, Efrat et al. [4] study the task of de-
veloping strategies for tracking and capturing a visible target with known tra-
jectory, while maintaining line-of-sight among obstacles. Kutulakos et al. [13]
consider the task of vision-guided exploration, where the robot is assumed to
move about freely in three dimensions, among various obstacles.

Our Results. The main objective of this paper is to demonstrate that
technology has reached the stage of actually applying previous theoretical
studies, at the same time triggering new algorithmic research. We hope that
this will highlight the need for and the opportunities of closer interaction
between theoreticians and practitioners. In particular, we describe the problem
of online searching by a real autonomous robot, for an object (a chair) hidden
behind a corner, which is at distance d from the robot’s starting position. Our
mathematical results are as follows:
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• We show that for an initial distance of at least d ≥ 1/δ from the corner, a
competitive ratio of 2− δ cannot be achieved. This implies a lower bound
of 2 on the competitive ratio by any one strategy, and proves that there is
an important distinction from the case without scan cost.

• We describe a heuristic strategy that is fast to evaluate and easy to im-
plement in real life.

• We show that this strategy is asymptotically optimal by proving that for
large distances, the competitive ratio converges to 2.

• We give additional numerical evidence showing that the performance of
our strategy is within about 2% of the optimum.

• Most importantly, we describe how our strategy can actually be used by
Kurt3D, a real mobile autonomous robot.

Further documentation of our work is provided by a video [6] that is also
available at the authors’ web addresses.

The rest of this paper is organized as follows. In Section 2, we describe
the technical details, properties, and capabilities of Kurt3D, an autonomous
mobile robot that was used in our experiments. Section 3 provides mathemat-
ical results on the problem arising from Kurt searching for a hidden object.
Section 4 gives a description of how our results are used in practice. The final
Section 5 provides some directions for future research.

2 The Autonomous Mobile Robot

In this section we describe technical details and background of the autonomous
mobile robot Kurt3D.

2.1 The Kurt3D Robot Platform

Kurt3D (Figure 1, top left) is a mobile robot platform with a size of 45 cm
(length) × 33 cm (width) × 26 cm (height) and a weight of 15.6 kg. Equipped
with the 3D laser range finder the height increases to 47 cm and the weight
to 22.6 kg.4 Kurt3D’s maximum velocity is 5.2 m/s (autonomously controlled
4.0 m/s). Two 90 W motors are used to power the 6 wheels, where the front
and rear wheels have no tread pattern to enhance rotating. Kurt3D operates
for about 4 hours with one battery (28 NiMH cells, capacity: 4500 mAh)
charge. The core of the robot is a Pentium-III-600 MHz with 384 MB RAM.
An embedded 16-Bit CMOS microcontroller is used to control the motor.

2.2 The AIS 3D Laser Range Finder

The AIS 3D laser range finder (Figure 1, top right) [16,17] is built on the basis
of a 2D range finder by extension with a mount and a standard servo motor.

4Videos of the exploration with the autonomous mobile robot can be found at
http://www.ais.fhg.de/ARC/kurt3D/index.html
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The 2D laser range finder is attached in the center of rotation to the mount
for achieving a controlled pitch motion. The servo is connected on the left
side (Figure 1, top middle). The 3D laser scanner operates up to 5h (Scanner:
17 W, 20 NiMH cells with a capacity of 4500 mAh, Servo: 0.85 W, 4.5 V with
batteries of 4500 mAh) on one battery pack.

Fig. 1. Top left: The autonomous mobile robot Kurt3D equipped with the 3D
scanner. Top right: The AIS 3D laser range finder. Its technical basis is a SICK 2D
laser range finder (LMS-200). Bottom row, left: A scanned scene as depth image.
Middle and right: Scanned scenes as point cloud viewed with a camera orientation
towards the door.

The area of 180◦(h) × 120◦(v) is scanned with different horizontal (181,
361, 721 pts.) and vertical (210, 420 pts.) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range finder (rotating mirror
device). Planes with more data points, e.g., 361, 721, double or quadruple
this time. Thus, a scan with 181 × 210 data points needs 2.8 seconds. In
addition to the distance measurement, the 3D laser range finder is capable
of quantifying the amount of light returning to the scanner, i.e., reflectance
data [14]. Figure 1 (bottom left) shows a scanned scene as depth image, created
by off-screen rendering from the 3D data points (Figure 1, bottom middle) by
an OpenGL-based drawing module.
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2.3 Basic 3D Scanner Software

The basis of the scan matching algorithms and the reliable robot control are
algorithms for reducing points, line detection, surface extraction and object
segmentation. Next we give a brief description of these algorithms. Details
can be found in [16].

The scanner emits the laser beams spherically from one center, such that
the data points close to the source are more dense. The first step is to reduce
the data. Therefore, data points located close together are joined into one
point. The number of these so-called reduced points is one order of magnitude
smaller than the original one.

Second, a simple length comparison is used as a line detection algorithm.
Given that the counterclockwise ordered data of the laser range finder (points
a0, a1, . . . , an) are located on a line, the algorithm has to check for aj+1 if

‖ai, aj+1‖ /
∑j

t=i ‖at, at+1‖ < ε(j) in order to determine if aj+1 is on line
with aj . (Figure 2, left)

The third step is surface detection. Scanning a plane surface, line detection
returns a sequence of lines in successive scanned 2D planes approximating the
shape of surfaces. Thus a plain surface consists of a set of lines. Surfaces are
detected by merging similar oriented and nearby lines. (Figure 2, middle)

The fourth and final step computes occupied space. For this purpose, con-
glomerations of surfaces and polygons are merged sequentially into objects.
Two steps are necessary to find bounding boxes around objects. First a bound-
ing box is placed around each large surface. In the second step objects close to
each other are merged together, e.g., one should merge objects closer than the
size of the robot, since the robot cannot pass between such objects (Figure 2,
right). These bounding boxes are used for avoiding obstacles.

Data reduction, line, surface and object detection are real-time capable
and run in parallel to the 3D scanning process.

Fig. 2. Left: Line detection in every scan slice. Middle: Surface segmentation. Right:
Bounding boxes of objects superimposing the surfaces
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2.4 3D Scan Matching

To create a correct and consistent representation of the environment, the
acquired 3D scans have to be merged in one coordinate system. This process
is called registration. Due to the robot’s sensors, the self-localization is usually
erroneous and imprecise, so the geometric structure of overlapping 3D scans
has to be considered for registration. The odometry-based robot pose serves as
a first estimate and is corrected and updated by the registration process. We
use the well-known Iterative Closest Points (ICP) algorithm [2] to compute the
transformation, consisting of a rotation R ∈

�
3×3 and a translation t ∈

�
3.

The ICP algorithm computes this transformation in an iterative fashion. In
each iteration the algorithm selects the closest points as correspondences and
computes the transformation (R, t) for minimizing

E(R, t)=

Nm
∑

i=1

Nd
∑

j=1

wi,j ||mi − (Rdj + t)||2 ,

where Nm and Nd are the number of points in the model set M , i.e., first
3D scan, or data set D, second 3D scan, respectively, and wji are the weights
for a point match. The weights are assigned as follows: wji = 1, if mi is
the closest point to dj within a close limit, wji = 0 otherwise. It is shown
in [2] that the iteration terminates in a minimum. The assumption is that in
the last iteration the point correspondences are correct. In each iteration the
transformation is computed in a fast closed-form manner by the quaternion-
based method of Horn [8]. In addition, point reduction and kD.trees speed up
the computation of the point pairs, such that only the time required for scan
matching is reduced to roughly one second [17]. Figure 3 shows three iteration
steps for 3D scan alignment.

Fig. 3. Three iteration steps of scan alignment process for the two 3D scans pre-
sented in Figure 1 (bottom, middle, right).
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2.5 3D Object Detection

Automatic, fast and reliable object detection al-
gorithms are essential for mobile robots used in
searching tasks. To perceive objects, we use the
3D laser range and reflectance data. The 3D data
is transformed into images by off-screen rendering.
To detect objects, a cascade of classifiers, i.e., a
linear decision tree, is used. Following the ideas of
Viola and Jones, we compose each classifier from
several simple classifiers, which in turn contain an
edge, line or center surround feature [20]. There

Fig. 4: Object detection in
range images.

exists an effective method for the fast computation of these features using
an intermediate representation, namely, integral image. For learning of the
object classes, a boosting technique, namely, Ada Boost, is used [20]. The
resulting approach for object classification is reliable and real-time capable
and combines recent results in computer vision with the emerging technology
of 3D laser scanners. For a detailed discussion of object detection in 3D laser
range data, refer to [14]. Figure 4 shows an office chair detected by a cascade
of classifiers.

3 Algorithmic Approach

Now we turn to algorithmic aspects of the online problem faced by the robot
who is trying to look around a corner in the presence of scan cost: Given an
initial position at a known distance from a corner or door, and an object that
is hidden at an unknown angle behind this obstruction, how should one move
in order to see the object as fast as possible? The total time incurred arises
from travel at a known maximum velocity, and the total time for stopping,
scanning, processing, and re-starting the robot.

When trying to develop a good search strategy, we have to balance theo-
retical quality with practical applicability. More precisely, we have to keep a
close eye on the trade-off between these objectives: An increase in theoretical
quality may come at the expense of higher mathematical difficulty, possibly
requiring more complicated tools. In an online context, the use of such tools
may cause both theoretical and practical difficulties: Complicated solutions
may cause computational overhead that can change the solution itself by caus-
ing extra delay; on the practical side, actually applying such a solution may
be difficult (due to limited accuracy of the robot’s motion) and without sig-
nificant use. To put relevant error bounds into perspective: The largest room
available to us is the great hall of Schloss Birlinghoven; even there, the size of
Kurt and the object is still in the order of 2% of the room diameter.

On the mathematical side, it should be noted that even in the theoretical
paper [7], semi-circles are considered instead of the solution to the differential
equation, in order to allow analysis of the resulting trajectories.
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In the following, we will start by giving some basic mathematical observa-
tions and properties (Section 3.1); this is followed by a discussion of globally
optimal strategies (Section 3.2). Section 3.3 describes a natural heuristic so-
lution that is both easy to describe and fast to evaluate; we give a number of
computational and empirical results that suggest our heuristic is within 2% of
an optimal strategy. Finally, Section 3.4 provides a number of mathematical
results, showing that our fast and easy heuristic is asymptotically optimal.

3.1 Basic Observations

First, we introduce some notation that will be used throughout this section.
Let us assume that the corner that hides the object is at distance d from

the start. Let xi denote the distance the robot travels in the i−th step, i.e.,
on its way from position i− 1 to position i, from which the i−th scan will be
taken. If the object was hidden infinitesimally behind position i, the optimal
solution would go perpendicularly to the line Li that runs from the corner
through position i, and then take one scan from there. Let di denote the
length of this line segment and observe that it meets Li at a point that lies on
the semi-circle spanned by the start and the corner. Then the optimum cost
to detect the object would be 1 + di, whereas the robot would only see the
object at position i + 1, having accumulated a cost of

i + 1 +

i+1
∑

j=1

xj .

Now suppose that c is the smallest competitive ratio that can be achieved in
this setting. By local optimality, for any scan position, the ratio of the solution
achieved and the optimal solution must be equal to c. Therefore,

xi+1 = c(1 + di) − (i + 1) −

i
∑

j=1

xj (1)

must hold for i = 1, 2, . . . In particular, we have x1 = c − 1 for the first step.

3.2 Globally Optimal Strategies

The above recursion can be used for proving a lower bound.

Theorem 1. There is no global c-competitive strategy with c < 2.

Proof. Assume the claim was false, and there was a c-competitive strategy for
c = 2 − δ. We show that xi ≤ (1 − δ)i holds, making it impossible for the
robot to get further than a distance of 1/δ away from the start, a contradiction.
Clearly, we have x1 = 1 − δ for step 1. Moreover,

di ≤
i
∑

j=1

xj
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holds, because di is the shortest path from the start to line Li, whereas the
sum denotes the length of the robot’s path. Plugging this into our recursion
yields

xi+1 ≤ (1 − δ)(1 +

i
∑

j=1

xj) − i.

By induction, we have xj ≤ (1 − δ)j , hence

xi+1 ≤ (1 − δ)
1 − (1 − δ)i+1

δ
− i ≤ (1 − δ)

1 − (1 − (1 + i)δ)

δ
− i

= 1 − (1 + i)δ ≤ (1 − δ)i+1,

using the Bernoulli inequality 1 − (1 + i)δ ≤ (1 − δ)i+1 twice. ut

Instead of increasing the distance d we could as well consider a situation
where start and corner are a distance 1 apart, but the scan cost is only 1/d.
Now Theorem 1 shows a remarkable discontinuity: Even for a scan cost ar-
bitrarily small, a lower bound of 2 cannot be beaten, whereas for zero scan
cost, a factor of 1.212 . . . can be obtained [9].

On the positive side, for n intermediate scan points, Equation (1) provides
n optimality conditions. As there are 2n degrees of freedom (the coordinates of
intermediate scan points), we get an underdetermined nonlinear optimization
problem for any given distance d, provided that we know the number of scan
points. For d = 1, this can be used to derive an optimal competitive factor
of 1.808201..., achieved with one intermediate scan point. For larger d (and
hence, larger n) one could derive additional geometric optimality conditions
and use them in combination with more complex numerical methods. However,
this approach appears impractical for real applications, for reasons stated
above. As we will see in the following, there is a better approach.

3.3 A Simple Heuristic Strategy

Now we describe a simple strategy for the searching problem that uses trajec-
tories inscribed into a circle. This reduces the degrees of freedom to the point
where evaluation is fast and easy. What is more, it works very well in realistic
settings, and it is asymptotically optimal for decreasing cost of scanning, or
growing size of the environment.

The robot simply follows a polygonal path inscribed into the semi-circle
of diameter d, spanned by start and corner. It remains to determine those
points where it stops for scanning its environment. This is done by applying
the optimality condition derived in Section 3.1. In step j, the robot moves
along a chord of length xj . From the corner, this chord is visible under an
angle of ϕj = arcsin(xj/d). The chord connecting the start to position i is of
length

di = d sin(
i
∑

j=1

ϕj),
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so that the recursion (1) obtained in Section 3.1 turns into

xi+1 = c



1 + d sin





i
∑

j=1

arcsin
(xj

d

)







− (i + 1) −

i
∑

j=1

xj .

Given any c > 1, we can tentatively compute steps of length xi by this formula,
starting with x1 = c−1. If the resulting sequence reaches the corner, the ratio
of c can indeed be achieved. If it collapses prematurely (by returning negative
values) c was too small. (For example, c = 2.001525... is optimal for d = 40;
see Figure 3.3 for an illustration of upper and lower bounds on this value.)

d=40
c=2.0016

d=40
c=2.0015

Fig. 5. An example for d = 40, with starting point on the right, corner on the left
of the semi-circles: (Left) For c = 2.0016, the circle sequence reaches the corner,
showing that the chosen c can be achieved. (Right) For c = 2.0015, the sequence
collapses before reaching the corner, showing that the chosen c cannot be achieved.
The actual optimum is about 2.001525...

By performing a binary search, the optimal ratio and the necessary step
lengths can be computed extremely fast. Moreover, an analysis of the optimal
ratio as a function of d shows that a maximum is reached for d = 4.400875...
which is precisely at the threshold between three and four necessary scans,
with a competitive ratio of 2.168544. (See Table 1 for an overview of the
critical values for which the number of scans increases, and Figure 7 for the
achievable ratios as a function of the distance.) This is still within about 2%
of the global optimum, which appears to be at about 2.12 (see Figure 6.)
Moreover, numerical evidence shows that the ratio approaches 2 quite rapidly
as d tends to infinity. This is all the more surprising, as the resulting initial step
length converges to 1, while a constant step length of 1 yields a competitive
ratio of π. In the following Section 3.4 we give a mathematical proof of this
observation.

3.4 Asymptotics

As we have seen in Theorem 1, there is a lower bound of 2 on the competi-
tive ratio for all strategies and large d. In the following we will show that for
large d, there is a matching upper bound on our circle strategy presented in
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Number Maximal c at
of scans d upper bound

0 0.618034 1.618034
1 1.530414 2.040287
2 2.799395 2.155363
3 4.400876 2.168544
4 6.316892 2.147994
5 8.514200 2.118498

Table 1. Threshold values for small numbers of scans, rounded to six digits.

|AB|=4.4

|AJ|=4.28

|GI|=1.33

J
I

|AC|=1.00

B

G

H
|AH|=3.34

|EG|=1.38 E

|AG|=3.41
|CE|=1.37

|AF|=2.24

F

D
C

|AC|=1.12

|AC|=1.12

A

Fig. 6. A solution for d = 4.4 that achieves competitive ratio 2.12: The starting
position is at A, the corner at B.
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Fig. 7. The competitive ratio as a function of d: (Left) for small values of d. (Right)
for larger values of d. Note the cusps at threshold values, the sharp peak at (4.4,2.17),
and the clear asymptotic behavior. The first step length, x1, is given by c − 1.

Section 3.3, proving it to be asymptotically optimal. For limited physical dis-
tances, it shows that even for arbitrarily small scan times, there is a relatively
simple strategy that achieves the optimal ratio of 2.

Our proof of the upper bound proceeds as follows. Let us assume that we
are given some fixed ε > 0. We then proceed to show that for c = 2 + ε,
the recursion presented in Section 3.3 does not collapse before the corner is
reached, if the diameter d of the semi-circle is large enough.

In proving the lower bound stated in Theorem 1, we have used the obvious
fact that the length dn of the optimal path cannot exceed the length of the
robot’s path. Now we are turning this argument around: The robot’s path
to position n does not exceed the length of the circular arc leading from the
start to position n. As this arc is not much longer than dn, the length of the
chord from the start to n, if the diameter d of the circle is large enough. More
precisely, we use the following.
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Lemma 1. (i) There is an upper bound on the total length of the first n steps
of the circle strategy that does only depend on n and ε, but not on d.
(ii) Given any A > 0, we can find d0 such that each arc of length ≤ A in a
circle of diameter ≥ d0 exceeds the length of its chord by at most ε2.

Proof. Claim (i) can be shown by the same technique as in the proof of The-
orem 1. In order to prove claim (ii), let a and c denote the maximum lengths
of an arc and its chord in a circle of diameter d satisfying a ≤ b + ε2. Let
2β denote the angle of the arc, as seen from the center, so that a = dβ
and c = d sin β hold. The maximum arc satisfying the condition is of length
a = dβd where βd is the solution of the equation βd − sin βd = ε2/d. In the
equivalent expression

dβd

(

1 −
sin βd

βd

)

= ε2

the fraction tends to one, so a = dβd must be unbounded. ut
These facts will now be used in providing a lower bound for the first steps

along the semi-circle, aiming for a competitive ratio of c = 2 + ε.

Lemma 2. Let ε > 0 and N be given. Then there is a number d0 such that
for each diameter d ≥ d0 we have xn ≥ 1 + (2n − 1) ε, for n ≤ N .

Proof. Using Lemma 1 we can choose d0 large enough that

n
∑

i=1

xi ≤ dn + ε2

holds for all n ≤ N if d ≥ d0. Now we proceed by induction. For x1 := (1 + ε)
the claim is fulfilled. For n = 2 we observe that d1 = x1 holds, so the recursive
formula (1) yields

x2 = (2 + ε)(1 + d1) − 2 − x1

= (2 + ε)2 − 3− ε ≥ 1 + 3ε.

Now assume the claim was true for x1, . . . , xn−1, where n ≥ 3, and let dn−1

be the (n−1)st chord, arising by connecting the start point with the (n−1)st
scan point. The induction hypothesis implies

j
∑

i=1

xi ≥

j
∑

i=1

(

1 +
(

2i − 1
)

ε
)

= j + (2j+1 − j − 2)ε.

From the recursion we obtain

xn = (2 + ε)(1 + dn−1) − n −

(

n−1
∑

i=1

xi

)

.

As d ≥ d0, we have dn−1 ≥
(

∑n−1

i=1
xi

)

− ε2 for n ≤ N . As n ≥ 3, we get
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xn ≥ (2 + ε)

(

1 +

(

n−1
∑

i=1

xi

)

− ε2

)

− n −

(

n−1
∑

i=1

xi

)

= (1 + ε)

(

n−1
∑

i=1

xi

)

+ (2 + ε)(1 − ε2) − n

= 1 + (2n − 1)ε + (2n − n − 3 − ε) ε2

≥ 1 + (2n − 1)ε. ut

Under the assumptions of Lemma 2 we can now prove the following.

Lemma 3. For the first N steps of the robot, 1

N

∑N−1

i=0
xi ≥ 5 holds.

Proof. We may assume that

xn ≥ 1 + (2n − 1) ε

holds for n ≤ N . If N is large enough and n ≥ N/2, we get

xn ≥ 1 +

(

10

ε
− 1

)

ε ≥ 10.

Thus,
N−1
∑

i=1

xi ≥

N−1
∑

i=N/2

xi ≥ 5N,

as claimed. ut

To conclude the proof, we consider a diameter d large enough for Lemma 3
to hold, so we have a lower bound of 5 on the average size for the first N steps.
This suffices to show that all following steps are at least of length 5.

Lemma 4. Assume that for some N ≥ 12, we have
∑N−1

i=1
xi ≥ 5N . Then

xn ≥ 5 for all n ≥ N .

Proof. Again we proceed by induction and consider

xn = (2 + ε)(1 + dn−1) − n −

(

n−1
∑

i=1

xi

)

.

As all xi are lengths of chords of the semi-circle with diameter d, we have

dn−1 ≥
2

π

n−1
∑

i=1

xi.

By a similar argument as before, we get



14 Sándor P. Fekete et al.

xn ≥ (2 + ε)

(

1 +
2

π

(

n−1
∑

i=1

xi

))

− n −

(

n−1
∑

i=1

xi

)

≥

(

4

π
− 1

)

(

n−1
∑

i=1

xi

)

− n + 2

≥

(

4

π
− 1

)

5n − n + 2 ≥ 5,

since n ≥ 12, as claimed. ut

With the help of these lemmas, we get

Theorem 2. The circle strategy is asymptotically optimal: For any ε > 0,
there is a dε, such that for all d ≥ dε, the strategy is (2 + ε)-competitive.

Proof. The preceding Lemmas 2, 3, 4 show that for any large enough d, the
sequence will consist of step lengths that are all at least 5. This implies that
the sequence will reach the corner in a finite number of steps, showing that a
competitive factor of (2 + ε) can be reached. ut

4 Practical Application

Our strategy was used in a practical setting, documented in the video [6]. In
the great hall of Schloss Birlinghoven, starting about 8 meters from a door
(d = 1 for the right scanner setting), Kurt follows the trajectory developed in
the third part; depending on the position of a hidden object (a chair) he may
have to perform a second scan from the corner. The second scenario shows a
starting distance of d = 2, resulting in two intermediate scan points.

5 Conclusions

We have developed a search strategy that can be used for an actual au-
tonomous robot. Obviously, a number of problems remain. Just like [9] pro-
vided a crucial step towards the solution for exploring general simple polygons
described in [7], one of the most interesting challenges is to extend our results
to more general settings with a larger number of obstacles, or the exploration
of a complete region. See Figure 8 for a typical realistic scenario. It should
be noted that scan cost (and hence positive step length without vision) can
cause theoretical problems in the presence of tiny bottlenecks; even without
scan cost, this is the basis of the class of examples in [1] for polygons with
holes. However, in a practical setting, lower bounds on the feature size are
given by robot size and scanner resolution. Thus, there may be some hope.
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Fig. 8. A typical scenario faced by Kurt3D. Top left: Extracted points at height
75 cm (corresponding to figure 1, bottom middle). Top right: Line detection using
Hough transform. Bottom: Automatically generated map with occlusion lines [17].
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