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6D SLAM with Kurt3D, by Andreas Nüchter, Kai Lingemann, Joachim Hertzberg,
University of Osnabrück, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59





Preface

As we set up the workshop with the following words defining the scope

A fundamental problem in the design of autonomous mobile cognitive systems is the
perception of the environment. Robotics researches this field in order to build reliable
technical systems or to broaden the understanding of human perception. Perception
is therefore studied independently by many researchers. On one hand, a basic part
of the perception is to learn, detect and recognize objects, which has to be done with
the limited resources of a mobile robot. The performance of a mobile system crucially
depends on the accuracy, duration and reliability of its perceptions and the involved
interpretation process. On the other hand, automatic environment sensing and modeling
is a fundamental scientific issue in robotics, since the availability of maps is essential
for many robot tasks.

A revolutionary method for gaging surroundings are 3D laser range finders and 3D
cameras, which enable robots to quickly scan objects in a non-contact way in three di-
mensions. These emerging technologies have lead to new challenges and new potentials
for data analysis. Firstly, robotic volumetric or 3D mapping of environments, consider-
ing all six degree of freedom of a mobile robot, has been done. Secondly, robots are able
to perceive the geometry for avoiding collision in 3D and to identify and stay on navi-
gable surfaces. In addition, 3D sensors have lead to new methods in object detection,
object localization and identification.

we were surprised when receiving mostly papers about simultaneous localization and mapping
(SLAM). SLAM in well-defined, planar indoor environments is considered solved, but new chal-
lenges arise when considering new 3D sensors and more degrees of freedom of representing robot
states or environment features. Taking this step into the third dimension, it became evident that
current robotic research is coping with these fundamental issues, rather than focusing on high-level
recognition and scene understanding.

The following collection covers a wide range of topics, ranging from robotic 3D environment sens-
ing, robot navigation to SLAM. We wish the reader interesting ideas and are looking forward to
continuing our research in 3D robotic environment cognition.

As the organizers of the workshop we would like to thank Christoph Hölscher, University of Freiburg,
for the support he has given in the last weeks. Furthermore we would like to thank the organizers
of the International Conference Spatial Cognition for hosting our workshop.

Andreas Nüchter, Oliver Wulf and Kai Lingemann
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Fusion of Stereo-Camera and PMD-Camera Data
for Real-Time Suited

Precise 3D Environment Reconstruction

Klaus-Dieter Kuhnert and Martin Stommel

Institute of Realtime Learning Systems, University Siegen
Hoelderlinstrasse 3, 57068 Siegen, Germany,
{Kuhnert, Stommel}@fb12.uni-siegen.de

Abstract. 3D environment reconstruction is a basic task, delivering the
data for mapping, localization and navigation in mobile robotics. We
present a new technique that combines a stereo-camera system with a
PMD-camera. Both systems generate distance images of the environ-
ment but with different characteristics. It is shown that each system
compensates effectively for the deficiencies of the other one. The com-
bined system is real-time suited. Experimental data of an indoor scene
including the calibration procedure are reported.

1 Introduction

To measure the geometrical structure of the operating environment has been a
very fundamental problem in mobile robotics for quite a long time. 2D or 3D
laser scanner and stereo-camera arrangements have been investigated thoroughly
for indoor and outdoor applications [1][2][3][4][5]. Also techniques with changing
active illumination have been employed, e.g. [6][7]. Also combinations of these
techniques have been tried [8]. These approaches often lack the necessary speed
and robustness for real time navigation and localization. Active techniques suffer
from low frame rates. The interpretation of stereo images on the other hand
consumes a lot of computing power and does not always deliver stabile results.

Since the advent of PMD-cameras [9] some first tries have been made on
person tracking in 3D [10][11] and fusion of the 3D data from the PMD-sensor
with the image of a CCD camera [12][13]. We are going to present a newly
developed system that combines the distance image stemming from a PMD-
camera with one generated by a two camera baseline stereo arrangement.

2 Problem Statement

The reconstruction of the surrounding of a robot from measurements can be
characterized with regard to the following objectives:

– A high precision is important for mapping applications and exact movements,
e.g. for docking.
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– The speed of data acquisition and processing determines the fastest possible
motion.

– For complex working tasks of the robot it is necessary to gather the complete
3D information.

Stereo reconstruction typically is computationally intensive and delivers dense
depth information only by applying intelligent guessing. It is difficult to obtain
robust results on homogenous object surfaces. Periodical structures also cause
difficulties. The occlusion and deocclusion especially at object edges often cannot
be measured correctly. On the other hand, the precision depends basically on
the length of the baseline of the camera setup and can be quite high.

Active techniques need a bright, regularly-reflecting target to work well.
Thus, black surfaces with high extinction or specular surfaces cannot be mea-
sured correctly. Laser scanners deliver sufficient resolution and due to their
widespread application in industry they are mostly quite robust. In contrast,
the acquisition rate for depth images is not comparable with standard CCD
cameras. Depending on the application, high prices for laser scanners can also
be a major drawback.

Therefore a combination of both techniques with each techniques compen-
sating for the measurement flaws of the other one seems favourable. Since for
mobile robots a real-time suited combination is necessary, we have chosen the
PMD-technology for the active camera.

3 PMD-Camera

The PMD camera directly delivers a depth image in camera centric coordinates
by actively illuminating the scene with modulated light.

3.1 General operation

The PMD camera is a solid state lidar-type system. Modulated light is emitted
from the active light source and received by a special chip consisting of an array
of photo mixer devices (PMD) [14].

The light is generated by two arrays of LEDs modulated with a sinus-wave.
The light is reflected by the target and received by a PMD-element. This PMD-
element is fed by the original sinus-wave at the electronic side. The received
delayed optical signal is mixed with the original electronic signal. This mixing is
executed by controlling the charge flow of two coupled photodiodes. As result the
phase difference between the original signal and the received signal is measured.
From the phase difference the time of flight - and therefore the distance to the
target - can be easily computed.

In our experiments we used a 1K PMD-camera with 64*16 Sensor elements.
The LEDs emitted at 800 nm in the near infrared. The illuminating light was
modulated by 20MHz amplitude modulation, which gives a measurement range
of 15m/2 = 7.5m. With a stronger illumination also larger distances could be
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Fig. 1. PMD-Camera

measured but the corresponding phase would not be unique. The construction of
the illumination device is mainly limited by the maximal frequency and thermal
power dissipation of the LED arrays. On the other hand it has to be eye-save.
Practically, with an integration time of 80 ms (12.5 Hz) and a viewing angle
of 70.5 degree the maximal measuring distance was about 5m. The integration
time can be freely chosen in microsecond steps, but with a smaller integration
time the signal/noise ratio decreases and the measurement range will be reduced
further.

Our camera has a special circuitry to suppress ambient light by a factor of
100.000. So it can be used indoor and outdoor. This suppression mechanism
proved to work robust in our experiments. There is also a model with higher
resolution (160*120 PMD elements) but this device can only be utilized indoors
because it possesses no ambient light suppression. The camera delivers three
images:

– A common intensity image, comparable a CMOS-camera,
– a distance image computed from the phase differences,
– a modulation image showing the modulation-quotient and thus giving a mea-

sure for the signal quality of the sensor element.

3.2 Calibration

For each pixel the PMD-camera delivers the distance between the summarized
illumination, a target surface element and the sensor element of the array. If
the distance is sufficiently large, the illumination can be approximated by a
point source near the middle of the camera lens and the camera itself can be
approximated by central projection. Furthermore the light source is assumed to
be at the centre of projection. These approximations are utilized to transform
the measured values into a Cartesian coordinate system.
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Fig. 2. Distance matrix of a flat surface at a distance of 3m

First the rays from the centre of projection to all pixels are computed. It
should be mentioned, that the lateral resolution is not uniform but increases
slightly at the borders of the sensor array. The Cartesian representation is then
obtained by standard transformation from polar coordinates. Fig. 2 shows the
distance matrix in Cartesian coordinates for a flat surface of high reflectance with
two nearer marker objects at 3 m. This setup has been used for the calibration
process at different distances to the camera.

To measure the phase, the mean value of the middle 5*5 pixels of the phase
image was computed for several distances. The relation between phase and dis-
tance then was approximated by a linear function (fig. 3). A maximum error of
about 3% was measured. Because as an important factor the signal/noise ratio
of phase determines the precision, the standard deviation was measured. Illumi-
nation decreases quadratically. Therefore, a 2nd order polynomial was fit to the
data and it proved to be appropriate (fig. 4). At a first glance the measurement
principle seems to allow a precision which would be independent of the distance.
But the strong influence of the illumination causes a heavy decay of precision
for larger distances.

All these measurements have been executed in the central region because
it is the simplest situation. Even here the standard transformation produces
asymmetrical results for a plain target surface stemming from a shift of the
optical axis by a few pixels. Also lens distortion must be considered at least
for angles larger than 20 degree with the optical axis. The first influence was
corrected by evaluating the asymmetry and by shifting the coordinate system
with xs = 1.3 and ys = 2.5 pixel. Lens distortion was included in the coordinate
transformation.

Even with this enhanced correction some errors remain for measurements
in the near region (< 1.5m) and at the border of the array (see fig. 5). In
the near region the model of projection is too simple and the source should be
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Fig. 3. Distance calibration. The distance function is approximated by the equation
z = −5.4022ϕ + 672.5143. Dots show the deviation of the samples.

Fig. 4. Measurement precision. The standard deviation is approximated by the function
σ = 2.734 · 10−5ϕ2 + 2.86723 · 10−3ϕ − 4.229692 · 10−2.
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Fig. 5. Distance matrix for a flat surface at a distance of 1m

modelled by a transmitter with finite area to compute the correct near field of
the modulation. At the border of the sensor array the illumination is to low to
keep the signal/noise ratio sufficiently high. Thus, S/N not only depends on the
distance but also on the position in the array. Further the angle between the
main direction of the lens and the illumination is about 3 degree, introducing a
complicated dependency. Of course the reflectance of the target also influences
the precision. The modulation signal observes not exactly the sinus shape causing
a non linear phase relation that depends on the signal amplitude. All these
influences can be most easily subsumed by observing the modulation image.
The modulation ratio is thresholded at 30% and all pixels on these positions
are ignored. By this method it can be guaranteed that the precision of the
measurement is described in good approximation (20%) by the function of fig.
4.

One very important effect remains to be described. If surfaces at different
distances remit light to one PMD-element, a mixed signal will be received. As-
suming two surfaces the resulting signal will be a linear combination of the two
sinus-waves which are weighted by the reflectance/distance ratio. Especially at
occluding edges the phase will be somewhere between the value of the nearer
and of the farther surface. Thus, it has to be interpreted with care. The only
statement about such a measurement can be: The true value lies between the
measurements of its neighbours. This also is an approximation because complex
configurations of several surfaces may exist that are projected on one PMD-
element. But even for scenes containing several overlapping objects it is a rea-
sonable assumption. Experimentally only situations with very extended objects
having high depth differences (e.g. observing a wall nearly parallel to its surface)
showed noticeable deviations.

With these considerations the measurement of a scene can be described by
two depth maps with a precision better than 5%. One depth map contains the
minimal allowable depth, the other one the maximal depth. It would also be
possible to describe the measurement by its mean and the estimated standard
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deviation. But because the distribution of the measurements depends on the
distance and because we wanted to build a simple real-time suited algorithm for
the fusion of the PMD and the stereo depth map the min/max description was
chosen.

The depth maps are created the following way. First the original measure-
ments are transformed and corrected according to the calibration. For each pixel
the minimum and the maximum value of the 4 or 8 neighbours are computed
and saved in the minimum and the maximum map respectively. Both maps are
then corrected by subtracting, respectively adding the appropriate value of the
precision by distance function (see fig. 4).

The two maps finally show the resulting range allowed by the constraints
of the measurement. Interestingly, the PMD camera delivers high precision at
surfaces with homogenous colour and surfaces with homogenous distance. At
occluding edges the results are most vague. This is in clear opposition to the
behaviour of stereo camera systems. Thus, these two types of systems were com-
bined. They effectively compensate for each other’s deficiencies.

4 Stereo Camera System

A camera system with two The Imaging Source DFK 21F04 cameras equipped
with Cosmicar/Pentax lenses is used. The cameras provide images with a reso-
lution of 640 by 480 pixels. They are arranged according to the standard stereo
geometry with one exception: The yaw angles of the cameras are modified to
achieve a wider common field of view. To compensate for different roll and pitch
angles of the optical axes the cameras are mounted on separate 3d-adjustable
10mm aluminium plates. Fig. 6 shows the camera system.

Fig. 6. Stereo camera
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4.1 General operation

A point (x, y, z) in 3d-space is projected by the stereo system to the image
coordinates (xl, yl) in the left image and (xr, yr) in the right image. Since in
applications for mobile robots often the vertical coordinate y is of minor im-
portance, for a stereo system with parallel optical axes the distance z measured
parallel to the optical axis can be computated as

z =
b

xr/f − xl/f
. (1)

where b denotes the distance between the cameras and f the focal length. Because
in our setup the yaw angles - denoted in the equation below as α and β - are
modified, the z-coordinate is computed as

z =
b

tan(α + tan−1(−xru/f1))− tan(β + tan−1(−xlu/f2))
. (2)

The variable u denotes the size of a single pixel. It is given in the data sheet
of the Sony ICX098BQ CCD-chip as 5.6 m/pixel. The equation already takes
into account that the focal length can be slightly different for both cameras. The
corresponding image positions xr and xl are found using the ”Winner Takes
It All” and ”Simulated Annealing” stereo matching algorithms based on the
implementation of Scharstein and Szeliski [15] and a time optimized version
based on the proposals of Sunyoto et al. [16] and Changming Sun [17]. The
first one motivated the usage of modern multimedia processor extensions, the
second one concerns a recursive subdivision of the stereo images as well as the
application of Gaussian smoothing prior to matching.

From the depth map obtained by the application of (2) a minimum and a
maximum depth map are computed. These maps give a 95 percent confidence
interval for every depth value. They are computed in a straightforward way by
subtracting, respectively adding, twice the standard deviation of the measure-
ment error of (2) to the original depth value. Since only structured areas, in
particular edges orthogonal to the baseline of the camera setup, result in mean-
ingful depth values, a Sobel operator together with a fixed threshold is used to
compute a binary confidence map. For unconfident pixels the minimum depth is
set to zero and the maximum depth is set to 10m.

4.2 Calibration

The stereo system is calibrated for a working distance of 1.5−4m according to the
working distance of the PMD-camera. The lens aperture is set to 5.6, the focus
to infinity. The lens of the right camera has a fixed focal length of 8mm. The
zoom of the left camera lens is adjusted with pixel accuracy to provide images
of the same size as the right camera. The aperture angle of the camera was
measured as 23.25 degree. The aluminium plates of the stereo setup are adjusted
manually to the same roll and pitch angle for both cameras. The remaining error
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is below 1/100 pixels for the roll angle and 1 pixel for the pitch angle. Since the
above mentioned stereo software is based on the assumption that epipolar lines
correspond to the rows of the camera images the roll and pitch angle have a
direct influence on the quality of the results. The yaw angle was adjusted to
centre an object in a distance of 4m in both cameras. The distance between the
cameras is 20cm.

After a careful manual adjustment of the stereo system, the parameters
b, α, β, f1 and f2 were determined in software. To this end a highly textured
test object is recorded for distances between 4m and 1.6m. The resulting dispar-
ities xr−xl are averaged for the object in every image. A genetic algorithm was
used to find parameters which minimize the integrated squared error between
the distance values predicted by (2) and the measured values. The algorithm
was stopped after a sufficient low standard deviation of 0.0077m was achieved.
The resulting parameters of our stereo setup are given in tab. 1.

b 0.0024691

α 0.3045662

β 0.3041429

f1 0.7583599

f2 0.7580368

Table 1. Camera parameters after calibration

The deviation from the expected values for the camera parameters results
from the spread for standard factory models, e.g. CCD chips which are not
exactly perpendicular/centred to the optical axes.

5 Fusion Of the Distance Data

The fusion of distance data was performed straightforwardly. Because both 3D
sensors are adjusted to a common optical axis, deliver their result in absolute
Cartesian coordinates and their relative positions are known in 3D, the coor-
dinate transformation between them is known as well. Thus, the PMD data
after correction and calibration have been registered and transformed to the
coordinate system of the left stereo camera. Also the lower resolution of the
PMD-camera is compensated by replicating the pixel information with appro-
priate factors in x and y direction. This way matrices of equal size are generated
giving the minimal and maximal distances for each sensor. For each pixel the
overlapping distance interval is accepted if it exists. If not the measurements
are contradictory and will be rejected. The method produces an improved depth
map and a map describing the quality i.e. the distance range of each single
measurement.
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6 Experiments

The experiments were conducted in a corridor of our university under realistic
conditions. An example scene is shown in fig. 7. The left image shows an image
from the stereo camera. The left part the scene comprises a wall with a door
and a poster. A person is standing next to the wall. The right part of the scene
consists of a white pillar and a white wall. A low carton is placed in the fore-
ground. Except for the person and the carton the original environment remained
unchanged. There are no additional posters or colorful objects which are some-
times found to facilitate the recognition of the environment of a mobile robot.
The scene can thus be considered typical for a robot application.

Fig. 7. Experimental setup

The difficulty of the scene for the stereo camera consists mainly in the big
poorly structured regions, which make up the biggest part of the scene. A minor
problem poses the shirt of the person with its regular pattern. For the PMD
camera the object borders pose a difficulty, first because of the abrupt depth
discontinuity, and second because of its low spatial resolution.

A schematic of the camera setup is shown on the right side of fig. 7. The stereo
camera is placed 104cm behind the PMD camera in a height of 136cm. The PMD-
camera stands 30cm lower, so it is not visible in the images of the stereo camera.
The distance between the PMD camera and the stereo camera compensates for
the different aperture angles. For the detection of stereo correspondences we used
an Athlon XP 2800 with 2GB RAM.

Fig. 8 shows the depth maps for different stereo matching algorithms. The
stereo system provides good results for the left edge of the pillar, the face and
shoulders. The regular pattern of the shirt often causes too high or to low depth
values. The right side of the pillar is not recognized because of the low contrast
to the background. As expected the results for the walls are sparse and rather
random. Concerning the depth values, the simple and fast Winner-Takes-It-All
algorithm provides almost the same results as the Simulated Annealing, which
is designed for quality instead of speed. In contrast the differences in runtime
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Fig. 8. Depth maps for different stereo matching algorithms

are quite big as shown in tab. 2. With a computation time in the range of
minutes, Simulated Annealing of course is no candidate for the implementation
on a mobile robot. But also the comparatively fast Winner-Takes-It-All needs
almost 2 seconds per image in the original version, which is still too much for the
most applications. By performing the optimizations mentioned in Sec. 4.1, the
computation could be accelerated by a factor of four, resulting in a computation
time of less than 500 milliseconds for the matching step. This method is thus
well suited for real-time applications.

Method Processing time [s]

”Winner takes it all”, original 1.92

”Winner takes it all”, optimized 0.47

”Simulated Annealing”, original 252

”Simulated Annealing”, optimized 67

Table 2. Computation time for stereo matching

Fig. 9 and fig. 10 show the results of the sensor fusion for this example.
Fig. 9 gives the deviation between the minimum and the maximum depth of the
merged stereo and PMD results. High deviations are indicated by light grey up to
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Fig. 9. Maximum deviation of the measurement

Fig. 10. Absolute Depth
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white. White is also used for points without intersection between the confidence
intervals of the stereo and PMD measurements, i.e. for points where one or both
methods failed to produce reliable results. In comparison to fig. 8 it appears that
the PMD-camera provides the most robust depth values for homogenous regions,
in particular for the pillar, the nearer part of the wall and the shirt and trousers
of the person. The PMD-camera hence provides the values which are missing in
the depth map of the stereo system. On the other hand the PMD-camera has
a higher inaccuracy in the area of depth discontinuities, e.g. near the head of
the person or on the left edge of the pillar. This inaccuracy is caused by the low
resolution of the camera. But as can be seen from fig. 9, in these regions stereo
matching yields in robust and precise results.

Fig. 10 shows the depth map after sensor fusion. Dark areas mark nearer
objects. We obtain a dense array of depth values. In homogenous regions the
results mainly stem from the PMD-camera, whereas the results on edges are
determined with high precision by the stereo system. There are only a few re-
gions where the two sensors cause differing results. In fig. 10 these pixels are
marked in white. They mainly result from ambiguities due to repetitive and
other ambiguous structures and occlusion near depth discontinuities.

7 Conclusion

In this paper a new method for the reconstruction of the environment of mobile
robots is presented which is based on the fusion of the sensor outputs of a
stereo camera and a PMD-camera. It is shown that each technique balances the
shortfalls of the other technique while preserving its characteristic benefits. As
a result we achieve dense depth maps with both reliable values on homogeneous
regions as well as precise and robust values on edges. Because of the optimizations
performed on the stereo algorithm and the range measurement in hardware by
the PMD-camera, our method is well suited for real-time applications.
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3D Environment Cognition
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Abstract. The use of 3D stereoscopic visualization in place of 2D view-
ing may increase telepresence in remote environments, providing a user
with higher environment cognition. Works in the literature have demon-
strated how stereo vision contributes to improve perception of some
depth cues often for abstract tasks, while little can be found about
the advantages of stereoscopic visualization in mobile robot tele-guide
applications. This work investigates stereoscopic robot tele-guide under
different conditions, including typical navigation scenarios and the use of
synthetic and real images. This work also investigates how user perfor-
mance may vary when employing different display technologies. Results
from a set of test trials ran on five virtual reality (VR) systems empha-
sized few aspects which represent a base for further investigation as well
as a guide when designing specific systems for telepresence.

1 Introduction

The commonly used 2D display systems suffer of many limitations in robot tele-
operation. Among which: misjudgment of self-motion and spatial localization,
limited comprehension of remote ambient layout and object size and shape, etc.
The above leading to unwanted collisions during navigation, as well as long
training periods for an operator. An advantageous alternative to traditional 2D
(monoscopic) visualization systems is represented by the use of a stereoscopic
viewing. In the literature we can find works demonstrating that stereoscopic
visualization may provide a user with a higher sense of presence in remote envi-
ronments because of higher depth perception, leading to higher comprehension
of distance, as well as aspects related to it, e.g. ambient layout, obstacles per-
ception, manoeuvre accuracy, etc. The above conclusions can in principle be
extended to tele-guided robot navigation. However, it is hard to find works in
the recent literature addressing stereoscopic mobile robot tele-guide, which mo-
tivated the authors to focus on this very important application field. In addition,
it is not straightforward how stereo viewing would be an advantage for indoor
workspaces where the layout, typically man-made, would be simple and empha-
sizing monocular depth cues such as perspective, texture gradient, etc.
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Fig. 1. Virtual Reality facilities at Aalborg University VR Media Lab and Medialogy
Copenhagen. Top from left: 160deg Panorama; 6-sided CAVE; 1-sided CAVE. Bottom
from left: Small Powerwall with projectors and filters; HMD; 3D Laptop, 3D Desktop.

When analyzing the benefits of stereoscopy, researchers often focus on com-
paring different depth cues, learning behaviors, etc., but they always run their
experimentation trials using one or two specific visualization technologies. A
comparison among different VR facilities is uncommon in the literature, despite
some works can be found comparing two different systems, e.g. [2], [3]. Never-
theless, depth perception and task performance may greatly vary for different
display technologies, providing a user with different sense of presence and inter-
action capabilities. In addition, display technologies also differ in cost, portability
and accessibility. Different display technologies would best fit different applica-
tion situations. For example, a ”light” system, portable and cost-effective, would
be required in case of low-range transmission possibility, whereas a larger setup,
providing higher immersion, would be more suitable for training purposes.

2 3D Stereo Visualization and Teleoperation

Several systems have been developed for Teleoperation and VR with different
display and interaction possibilities, (e.g. [15], [16]). Large displays for immer-
sive presentations, e.g. Powerwalls, Panorama, or systems for individual use but
allowing for high interaction, e.g. the CAVE system, [1], or systems with Head
Mounted Display (HMD). Figure 1 shows examples. Different technologies have
been developed which confirm the fundamental role of stereoscopic visualization
for most VR systems. The basic idea supporting stereoscopic visualization is
that this is closer to the way we naturally see the world, which tells us about
its great potential in teleoperation. Main approaches to 3D stereo visualization
may be classified as:
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– Passive Stereo. Multiplex images in space and they can be sub-divided in:
Anaglyph (separation based on color filters); Polarized (separation based on
polarized filters); Separated Displays (separation based on different displays
very close to user eye as in HMDs).

– Active Stereo. Multiplex images in time typically based on Shutter Glasses,
(LCD shutter panels in synchronization with the visualization display).

– Autostereoscopic Stereo. Separates images based on special reflecting sheets
laying on the display, or other methods. Do not require goggles.

Different stereoscopic approaches can be used coupled to different display
systems. The latter being responsible for the degree of immersion, interactivity,
isolation from the surroundings, etc. Among main components:

– Display Size, from tiny HMD monitors to large 360deg. panoramic screens.
– Display Structure, e.g. flat, curved, table-like, cubic shaped, head mounted.
– Projection Modality, LCD/CRT monitors, front/back projected screens.
– Image Quality, e.g. resolution, brightness, contrast, color range, refresh rate.

The literature works investigating the benefits of stereoscopy can be clas-
sified as either application specific, or abstract tasks with general performance
criteria, [2]. In literature test trials often deal with assessing the role of most
dominant depth cues, e.g. interposition, binocular disparity, movement parallax,
[4], and their consequence to user adaptation to new context (user learning ca-
pabilities). The parameters through which assess stereoscopy benefits typically
are: item difficulty and user experience, accuracy and performance speed, [4], [5].
Test variables altered during experiments include: changes in monocular cues,
texture type, relative distance, etc., other than stereoscopic versus monoscopic
visualization. Everybody seems to agree that stereoscopic visualization presents
the necessary information in a more natural way, which facilitates all human-
machine interaction [5]. In particular, stereoscopy improves: comprehension and
appreciation of presented visual input, perception of structure in visually com-
plex scenes, spatial localization, motion judgement, concentration on different
depth planes, perception of surface materials. The main drawback, which have
yet prevented large application, is that users are called to make some sacri-
fices, [7]. A stereo view may be hard to ”get right” at first attempt, hardware
may cause crosstalk, misalignment, image distortion, and all this may cause eye
strain, double images perception, depth distortion.

Most of the benefits of stereoscopy may affect robot tele-guide. Among the
conclusions gathered from the literature: ”most tele-manipulation tasks require
operators to have a good sense of the relative locations of objects in remote
world”, [5]; ”stereopsis gives better impression of tele-presence and of 3D layout”,
[8], [9]; ”binocular disparity and movement parallax are important contributors
to depth perception”, [4]; ”a robot in a dangerous environment can be controlled
more carefully and quickly when the controller has a stereoscopic view”, [14].
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3 Robot Tele-Guide and 3D Visualization Technologies

It is proposed to investigate benefits of stereoscopic viewing based on the analy-
sis of few factors typically described as predominant, (e.g. [10], [3]), i.e. depth
relationships and motion perception. Two categories of user studies are proposed:

– Aptitude Tests. To assess user’s ability in estimating egocentric distance and
self-motion when using stereoscopic visualization under static conditions or
passive (computer controlled) motion. Proposed trials concern ”Egocentric
Distance”, (the user stands in front of a corridor while he/she is asked to es-
timate the egocentric distance to the far-end wall-plane); and ”Self-Motion”,
(the user is driven along a corridor while is asked to estimate robot speed).

– Interactive Tests. To assess user’s ability in estimating relative and egocentric
distance when using stereoscopic visualization under dynamic conditions or
user controlled motion. Proposed trials concern ”Collision Avoidance”, (the
user drives along a narrow corridor avoiding making collisions against the
walls); and ”Access Width”. (the user is asked to estimate access width of
visible doorways).

The outcome of the above experimentation is in terms of: measurement ac-
curacy, (directly provided by the user as answers to questionnaires, or inferred
based on number of collisions registered); and task-completion time, (recorded
in some trials).

At the Aalborg University we have a large variety of state-of-the-art VR
facilities, which represents a formidable testing ground for the proposed investi-
gation (Figure 1 shows the VR facilities). In particular, for our investigation we
have considered:

– 3D Laptop. Medium Notebook, 15in high-res display. Passive anaglyph.
– 3D Desktop. 21in CRT high-res monitor. Passive anaglyph / active shutters.
– Small Powerwall. Front projected 1.5m x 1.5m silver screen, 2 high-res pro-

jectors. Passive stereo with polarized filters.
– 1-sided CAVE. Cost-effective rear-projected 2.5m x 2.5m screen, 1 low-cost

low-res high-freq projector. Passive anaglyph / active shutters, [11].
– Head Mounted Display. 2x0.59in OLED LCDs 800x600. Separated displays.

User tested the systems observing both simulated and real stereoscopic im-
ages. The simulated images were rendered from a graphical model which was
constructed as it would be extracted from an elevation map from an onboard
laser rangefinder. The real images were recorded with a stereo camera setup for
mobile robots expected onboard. We assess systems capabilities for different dis-
play technologies asking test users to report about their experience through ques-
tionnaires. In particular, questions are grouped into five judgement categories:
adequacy to application, realism, immersion, 3D impression, viewing comfort.
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5

Fig. 2. The simulated workspace. Top: 2 images on the CAVE and workspace map.
Bottom: a moment during comparative tests of 3D Desktop and HMD; simulated and
real robot (the Morduc system at DIEES, University of Catania, Italy).

4 Testing

Figure 2 shows the simulated workspace. During the experimentation we altered:
Illumination, Texture, Planes depth, Access width, Robot speed. Concerning test-
ing with real stereoscopic images, the users were asked to observe 4 different
stereo videos on the VR facilities. The cameras provided low resolution color
images suitable for low-bandwidth transmission. Figure 4 shows a stereo snap-
shot from a recorded video.

After some pilot studies, 15 users were asked to run the Aptitude and the
Interactive trials. An error-rate index was calculated based on user answers and
ground truth [6]. The Aptitude trials consisted of 2 test trials (distance and
motion). In the Interactive trials users were asked to drive through a path which
combined the ”Collision Avoidance” and ”Access Width” tests. Figure 2 shows
a general workspace map for the Interactive trials.

Under stereoscopic visualization users perform better the Aptitude ”Egocen-
tric Distance” tests and the Interactive ”Access Width” tests. Variance analysis
with repeated measures showed a main effect of stereo viewing on percentage
of correct answers: F=5.38 and p=0.0388 (egocentric distance); F=5.33 and
p=0.0368 (access width). Figure 3 shows accuracy of a typical run, and the
percentage of correct answers for a representative pool of users. The highest
improvement was obtained on the 3D Desktop. We believe this may due to
the lower 3D impression sometime provided in the CAVE for positive parallax,
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Fig. 3. Left: inaccuracy of a typical run from the Aptitude Egocentric Distance tests
(top) and percentage of correct answers for a representative pool of test users for
the Interactive Access Width (bottom). Right: results for the comparative tests with
synthetic images (top) and stereoscopic videos (right). Cells with 2 values represent
judgment for negative (left) and positive (right) parallax.

(far-end wall-planes appeared ”compressed”). The benefits of stereoscopy when
estimating robot self-motion were instead not significant. This seemed to agree
with the theory of Hubona et al., [12], with motion saturating the visual system
so that stereopsis would not be relevant. The Interactive ”Collision Avoidance”
trials did not provide significant results.

The results of the comparative tests are shown in figure 3. We can observe
that users believe that larger visualization screens provide higher Realism and
Adequacy of depth cues in robot teleguide than other VR systems. This goes
along with Demiralp et al. considerations , [2], telling that ”looking-out” tasks
(i.e. where the user views the world from inside-out as in our case), require users
to use more their peripheral vision. Larger screens provide higher Immersion, (as
expected). Interestingly, the sense of immersion drops in case of passive anaglyph,
mostly justified by eye-strain arising from rear-projection (screen alters colors
causing high crosstalk). It may surprise the reader that most users claim a higher
3D Impression with 3D Desktop rather than with the CAVE. In particular,
this concerned the behind display impression (positive parallax). Confirmation
that 3D Desktop perceived 3D Impression can be large, can be found in the
work of Jones et al., [13]. In our case the range of perceived depth represents a
large workspace portion for small screens than for larger. The highest Comfort
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Fig. 4. Passive anaglyph stereo images: graphical simulation (left), real image (right).

judgement is assigned to the Small Powerwall, as confirmation of the benefits of
front-projection and polarized filters.

The real videos were in general best appreciated in the CAVE, then on the
HMD, and then on the 3D Desktop with active stereo. A higher Realism was
felt by the users compared with synthetic images (except in case of Anaglyph
stereo), while Adequacy was generally worse. The Immersion category gets the
same scores obtained for synthetic images but scores for passive anaglyph are
higher (probably a consequence of higher realism). 3D Impression is generally
worse. The viewing comfort is typically worse too. It is best for HMD and CAVE
with shutters and almost unacceptable for CAVE with anaglyph. Figure 3 shows
average scores for the different judgment categories.

5 Conclusion

The proposed work investigated the role of 3D stereoscopic visualization in ap-
plications related to mobile robot teleguide. Results from a set of test trials ran
on five different VR systems emphasized few differences which represented a base
for further investigation. The stereoscopic viewing improves performance in case
of estimation of egocentric and related distance, while it does not show significant
improvements in case of self-motion perception compared to other depth cues. A
main purpose of the proposed investigation was also the comparison of different
systems, which characteristics were described in terms of adequacy to applica-
tion, realism, immersion, 3D impression, and viewing comfort. We hope that our
comments on those aspects can support system design for specific applications
in Telerobotics (to be considered in relation to cost and portability). Future in-
vestigation will concern with a deeper analysis of the Interactive tests and the
extension of our tests to large VR displays such as Panoramas, Powerwalls, and
the 6-sided CAVE.
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Navigating Mobile Robots with 3D Laser Data 
in Real Time 

Oliver Wulf and Bernardo Wagner 

{wulf,wagner}@rts.uni-hannover.de 

Two main problems in mobile robotics are localization and navigation. It is 
common practice to solve these problems based on 2D range sensor data. But 
there are situations in real world indoor and outdoor environments where 2D 
data is not sufficient. Examples are overlapping and negative obstacles as well 
as well as cluttered environments and uneven terrain. To overcome these 
problems we are using 3D laser range scanner for environment perception. Our 
focus lies on the extraction of obstacle and landmark information from 3D 
sensor data. As our 3D navigation system is used to control mobile robots all 
algorithms need to be computable in real time on a moving platform. This 
presentation gives an overview of our 3D laser scanner and the concept of 
Virtual 2D Scans. But the focus of our presentation lies on the demonstration of 
real-world robotic applications using 3D environment perception. 

3D Laser Scanner 

The 3D scanner consists of a standard 2D laser range finder (Sick LMS 
291-S14) and an additional servo drive (RTS/ScanDrive). This 
approach is common praxis [1][2][3] as there is no commercial 3D 
laser scanner available that meets the requirements of mobile robots. 
The specialties of our ScanDrive are a number of optimizations that are 
made to allow fast scanning. One mechanical optimization is the split-
ring connection for power and data. This connection allows continuous 
360° scanning without the accelerations and high power consumption 
that are typical for panning systems. Even more important than the 
mechanical and electrical improvements is the precise synchronization 
between the 2D laser data, servo drive data and the wheel odometry. 
Having this good synchronization, it is possible to compensate 
systematic measurement errors and to measure accurate 3D point-
clouds even with a moving robot. The data output of the laser scanner 
is an set of 3D points given in a robot centered Cartesian coordinate 
system. 
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The data rates that are used in our experiments are between 240x181 
points (n=43440) scanned in 3.2s and 90x181 points (n=16290) in 1.2s 
(angle resolution 4° horizontal x 0.5° vertical). 
 

 
Fig. 1. 3D Laser Scanner RTS/ScanDrive 

Virtual 2D Scans 

The 3D point-clouds that are acquired by the 3D scanner contain 
detailed information about the surrounding environment. Because 3D 
point-clouds are raw data representations, they include redundant 
information and many measurement points which are not needed for 
localization and mapping. Approaches which use this raw data for scan 
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matching and full 3D modeling are computational expensive. If the 
goal is to localize or navigate a mobile robot, these full 3D algorithms 
are not efficient. The use of Virtual 2D Scans is more efficient as it 
aims to reduce the amount of data without loosing information that is 
essential for mobile robot localization. The reduced data sets can 
afterwards processed with computationally less expensive 2D matching 
and SLAM algorithms. The data representation that is chosen for 
Virtual 2D Scans is similar to the data that can be measured directly 
with a 2D laser range sensor. 
 

2D point 
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For this reason existing 2D scanners can be replaced with a more 
capable 3D perception systems using existing 2D localization, SLAM 
and path planning algorithms.  
 
The Virtual 2D Scan is processed in two steps. The reduction of the 3D 
point-cloud: 
 

LV ⊂  with mV =  and nm << . 

 
And the projection onto the horizontal plane: 
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The process if reducing the 3D point-cloud is depending on the 
application and the environments. Different algorithms and heuristics 
can be found in [4], [5] and [6]. 
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Fig. 2. Comparison of a 2D Scan (left) and a Virtual 2D Scan (right). 

The Virtual 2D Scan is optimized to find walls in a cluttered room 

Application Overview 

The presentation gives an overview over a number of demo 
applications using the 3D perception system. The demo applications 
feature the full mobile robot navigation circle including localization, 
mapping and path planning. Robot operation is demonstrated in 
cluttered indoor environments [4], urban outdoor environments [5][7] 
and industrial halls [6][8]. 
 

    
Fig. 3. Mobile Robot RTS/Dora (left), 3D point-cloud (right) 
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Fig. 4. RTS/MoRob-Kit (left), Segway (center), RTS/STILL Robotic Fork-Lift (right) 
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Detecting Useful Landmarks for Visual SLAM
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Abstract. In this paper, we introduce a new method to automatically
detect useful landmarks for visual SLAM. Landmarks are detected by a
biologically motivated attention system. Various experimental results on
real-world data show that the landmarks are useful with respect to be
tracked in consecutive frames and to enable closing loops.

1 Introduction

An active area of research in mobile robotics is simultaneous localization and
mapping (SLAM), where a map is autonomously constructed of the environ-
ment. SLAM for indoor settings based on laser scanners is today considered a
mature technology. However, the laser scanner is much too expensive for many
applications. Therefore and because of the high amount of information offered
by camera images, the focus within the community has shifted towards using
visual information instead [1, 4, 6, 5]. One of the key problems in SLAM is loop
closing, i.e. the ability to detect when the robot is revisiting some area that has
been mapped earlier.

To perform SLAM, landmarks have to be detected in the environment. A key
characteristic for a good landmark is that it can be reliably detected, this means
that the robot is able to detect it over several frames. Additionally, it should
be redetectable when the same area is visited again, this means the detection
has to be stable under viewpoint changes. Often, the landmarks are selected by
a human expert or the kind of landmark is determined in advance. Examples
include localization based on ceiling lights [10]. As pointed out by [9], there is
a need for methods which enable a robot to choose landmarks autonomously. A
good method should pick the landmarks which are best suitable for the current
situation.

In this paper, we suggest to use a computational visual attention system [2]
to choose landmarks for visual SLAM. The advantage of this method is that it
determines globally which regions in the image discriminate instead of locally
detecting predefined properties like corners. We evaluate the usefulness of the
attentional regions of interest (ROIs) and show that ROIs are easily tracked over
many frames even without using position information and are well suited to be
redetected in loop closing situations.

The application of attention systems to landmark selection has rarely been
studied. Two existing approaches are [7], in which landmarks are detected in
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Fig. 1. Attentional landmark selection for visual SLAM

hand-coded maps, and [8], in which a topological map is build. The only ap-
proach we are aware of which uses an approach similar to a visual attention
system for SLAM, is presented in [6]. They use a saliency measure based on
entropy to define important regions in the environment primarily for the loop
closing detection in SLAM. The map itself is built using a laser scanner though.

2 System Overview

In this section, we give an overview over the architecture in which the landmark
detection is embedded (see Fig. 1). More details on the architecture can be found
in [3]. The main components are the robot which provides camera images and
odometry information, a landmark detector to create landmarks, a database to
store the landmarks, and a SLAM module to build a map of the environment.

When a new frame from the camera is available, it is provided to the land-
mark detector. The landmark detector consists of a ROI predictor which predicts
the position and appearance of landmarks depending on previous frames and on
position estimations from the SLAM module, a ROI detector which redetects
predicted ROIs and finds new ROIs based on the visual attention system VO-
CUS, a matching buffer which stores the last n frames, performs matching of
the ROIs in these frames and creates landmarks from matched ROIs, and a filter
module which filters out low quality landmarks.

The landmarks which pass the filter are stored in the database and provided
to the SLAM module which performs the estimate of the position of landmarks
and integrates the position into the environmental map. To detect old landmarks,
the landmark position estimates from the SLAM module are used to narrow
down the search space in the database.

The ROI detector consists mainly of the biologically motivated attention
system VOCUS which detects regions of interest similar to the human visual
system. The computations are based on detecting strong contrasts and unique-
ness of features for the features intensity, orientation, and color (details in [2,
3]). The matching of ROIs between frames is based on the similarity of the ROIs
(depending on the size of the ROI and a feature vector which describes the ap-
pearance of the ROIs) and on the prediction, i.e. the expected position of the
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ROI considering the movement of the robot (details about the matching buffer
in [3]). Details about the robot and the SLAM architecture can be found in [5].

3 Experiments and Results

The experiments were performed on a sequence of 658 images, obtained in a
hallway by a robot driving 2.5 times in a circle. This setting is especially well
suited to investigate loop closing situations, since most of the visited regions
appear again after a while. The experiments consist of two parts: first, we show
how the matching of ROIs can be used for tracking over consecutive frames and
investigate the matching quality with and without position prediction. Second,
we show how the matching of ROIs can be used in loop closing situations.

Tracking First, we investigate the matching of ROIs between consecutive frames.
To investigate the matching by similarity independently from proximity, we first
only consider matching of the ROIs based on the size of the ROIs and the simi-
larity of the feature vector and second combine it with the position prediction.

We investigated how the number of landmarks, the length of the landmarks
(i.e. the number of associated ROIs), and the quality of the matching (nb. false
matches) depends on the choise of the matching threshold δ (Tab. 1, top). It
shows that the number of landmarks increases when δ increases as well as the
length of the landmarks, but on the other hand there are also significantly more
false matches.

Finally, we performed the same experiments with additional position pre-
diction (Tab. 1, bottom). It shows that the false matches are avoided and the
matching is robust even for higher values of δ. This means that for a high thresh-
old combined with position prediction, a higher amount of landmarks is achieved
while preserving the tracking quality.

Loop closing In the next experiment, we investigate the matching quality in
loop closing situations. We proceed as follows: for each ROI that is detected in
a new frame, we match to all ROIs from all landmarks that occurred so far. We
used a tight threshold for the matching (δ = 1.7) and assumed that no position
information is available for the ROIs. This case corresponds to the “kidnapped
robot problem”, the most difficult version of loop closing. If additional posi-
tion information from odometry is added, the matching gets more precise, false
matches are avoided and the threshold might be chosen higher.

In these experiments, the system attempted to perform 974 256 matches be-
tween ROIs (all current ROIs were matched to all ROIs of all landmarks that
were detected so far). Out of these possible matches, 646 were matched, 575
(89%) of these matches were correct. Fig. 2 shows two examples of correct
matches and one of a false match.

The experiments show that the attentional ROIs are useful landmarks which
are both successfully tracked over consecutive frames and suitable to be rede-
tected after visiting an area again from a different viewpoint.
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matching without prediction:

Threshold # landm. # ROIs # ROIs/Landmark (av) # false m.

1.7 62 571 9.2 1
2.0 73 730 10.0 7
2.5 88 957 10.9 15
3.0 102 1109 10.9 42
5.0 130 1568 12.0 147

matching with prediction:

Threshold # landm. # ROIs # ROIs/Landmark (av) # false m.

1.7 61 566 9.3 0
2.0 73 724 9.9 0
2.5 88 955 10.9 0
3.0 98 1090 11.1 0
5.0 117 1415 12.1 0

Table 1. Matching of ROIs for different thresholds δ

Fig. 2. Matching results in loop closing situations: the first row shows a ROI in a
current frame, the second row shows a previously seen ROI from the database. This
situations usually occurred after the robot drove a circle and revisited the same area
again. Two correct matches (left, middle) and one false match (right) are shown.
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4 Conclusion

In this paper, we have presented a method for landmark selection based on a
biologically motivated attention system which detects salient regions of interest.
The matching of regions shows to be successful not only in short-term tracking
but also in loop closing. The detection and matching method has been tested in
a SLAM scenario to demonstrate the basic performance for in-door navigation.
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8. Ouerhani, N., Bur, A. and Hügli, H. Visual Attention-based Robot Self-
Localization. In: Proc. of ECMR (2005) 8–13.

9. Thrun, S. Finding Landmarks for Mobile Robot Navigation. In: Proc. of the 1998
IEEE International Conf. on Robotics and Automation (ICRA ’98) (1998).

10. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox,
D., Hähnel, D., Rosenberg, C., Roy, N., Schulte, J. and Schulz, D. Probabilistic al-
gorithms and the interactive museum tour-guide robot Minerva. Int’l J. of Robotics
Research 19 (11, 2000).

Robotic 3D Environment Cognition
Bremen, Germany

September 2006

Page 39





Monocular-vision based SLAM
using line segments
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Abstract. This paper presents a new approach for using line segments
in vision-based SLAM. This work is based on a previous algorithm which
tackles the initialisation problem in EKF-SLAM using an initial sum of
Gaussians for point features. Here, the supporting line of a segment is
represented with its Plücker coordinates, a representation well adapted
for the initialisation and estimation processes. Results on real data are
presented.

1 Problem statement
Vision is becoming more and more popular in the SLAM community: cameras
can easily be embedded on a robot, they gather a lot of useful data, and allow
the development of 3D SLAM approaches. But a single camera does not provide
the depth information of the perceived features (vision based SLAM is often
referred to as bearing-only SLAM ): this raises the need to develop a speci�c
feature initialisation algorithm for the commonly used extended Kalman �lter
framework.

Several initialisation methods for point visual features have recently been
proposed. The delayed methods accumulate data about the landmarks until a
Gaussian estimate is computed [1,2], whereas the un-delayed methods add an
estimate of the landmark since the �rst observation [3,4]. Recently, a special in-
verse depth representation of a 3D point has been used [5,6]. The key properties
is that with this representation the observation function is nearly linear in the
neighbourhood of the camera pose: hence the initialisation procedure does not
su�er the tedious linearization step of the EKF, as an acceptable Gaussian esti-
mate of the inverse-depth representation of the point can directly be computed.

As compared to point features, line segment features have interesting proper-
ties to build a representation of the environment: they provide more information
on the structure of the environment, and are more invariant with respect to
viewpoint changes. Moreover, numerous line segments can be detected in struc-
tured or semi-structured environments. The two algorithms presented in [5,6]
have been adapted to introduce segments in the map [7,8]. But using a camera
moving forward at low frame rates leads to dramatic divergence because the
conditions for the observation function to be linear are not satis�ed.

In this work, an extension to the multi-hypotheses monocular SLAM algo-
rithm [2] for 3D line-segments is presented. It is based on a well-adapted rep-
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resentation for the 3D line segments and a careful initial probability density
function (PDF) that approximates the state.

2 Segments in monocular SLAM

2.1 Segment representation.

3D line. The choice of a good representation for 3D lines is essential for the
overall estimation algorithm. Among the various minimal or non-minimal possi-
bilities, we selected one that is suited with the projection model of a 3D line in a
camera: this projection de�nes the 3D plane Π going through the focal point and
the segment. The Plücker coordinates of a 3D line are very well adapted, since
the plane Π is directly represented by its normal n (a more detailed description
of the Plücker coordinates can be found in [9]):

L(6×1) =
(

n = h.n
u

)
(1)

h is the distance of the line to the origin, and u is the direction of the line. This
6-dimension non-minimal representation is constrained by the two relations:

{ ||u|| = 1 (normalisation)
n · u = 0 (Plücker constraint) (2)

These constraints are considered in the estimation process (section 2.2).

Segment extremities. Line segments extraction algorithms do not produce seg-
ments with stable extremities. This is the reason why the observations and the
stochastic map only contain information related to the supporting line. However,
extremities are very important to give a higher level of signi�cance to the map.
In our framework the extremities of a segment are represented by deterministic
coordinates in a frame attached to the line.

2.2 Stochastic estimation

Initialisation. As noted before, a single observation gives a measure of the plane
Π: with observation noise modelled as a centred Gaussian distribution, this �rst
observation gives a Gaussian estimate of the vector n. Two other magnitudes do
not have a Gaussian estimate: the depth and the direction of the 3D line. As
in [2,4] in which the points depth is initialised as a PDF de�ned by a sum of
Gaussians, the depth of the 3D line is also approximated by a geometric sum of
Gaussians, de�ned according to a geometric progression (the depth hypotheses
lay in the direction de�ned by the vector g). The direction u of the line is in the
plane Π, and is approximated considering its angle θ in Π. This orientation θ
is approximated by a uniform sum of Gaussians. Figure 1 shows the geomet-
ric construction of these hypotheses. Also, typical Gaussian sum for depth and
orientation and a 3D view of the resultant hypotheses are shown Figure 2.
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Fig. 1. (Ox'y') corresponds to the plane Π, in red the image plane projection
in Π and the camera aperture. From left to right: (a) projection of line L and
de�nition of the vector g, (b) the set of points Xi that correspond to the mean
of the Gaussians whose sum represents the PDF on the line depth, and (c) the
set of lines considered to initialise the estimation process.

As in [2], as the robot moves each new observation of the line is used to update
the likelihood of all the initial hypotheses, less likely hypotheses are pruned, and
the initialisation process is iterated until a single hypotheses remains: it is then
added in the stochastic map, and its parameters are further estimated using the
SLAM extended Kalman �lter.

Kalman update and constraints. Once an hypothesis has been selected and added
to the stochastic map, there is no guarantee that the Kalman updates will not
break the two constraints of equation 2. To ensure the correctness of the Plücker
representation, the technique of smooth constraints is used (see [10])

3 Experimental results

Parameters de�nition in simulation. Our algorithm is driven by several param-
eters. Table 1 gives the list of the parameters and the values used in these ex-
periments. The values are set according to their physical meaning and according
to extensive simulation tests that have been conducted.

Image segments matching. To ensure robust and reliable segment matches, we
rely on the Harris interest points matching algorithm presented in [11]: to each
segment are associated the closest matched interest points, and segment matches
are established according to a hypothesis generation and con�rmation paradigm.
This simple process has proved to yield outlier-free matches (�gure 3), even
for large viewpoint changes, which is very helpful to associate landmarks when
closing loops.

Results. Results on an image sequence acquired with an iRobot ATRV are pre-
sented Figure 3. Here the robot moved along a 5 meters diameter circular tra-
jectory, and the robot odometry is used to feed the prediction step of the SLAM
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Fig. 2. Left: geometric sum of Gaussian in the range [0.5, 50] with α = 0.25
and β = 1.8, uniform sum of Gaussians in the range [0, 180] with σ = 10 and
kσ = 1.5. Right: 3D view: in green the real segment, in red the set of hypothesis.

process. The camera is looking sidewards to the centre of the circle where two
boxes have been put. At the end of the process, horizontal and vertical edges
estimates have consistent Plücker coordinates (within the 3σ bounds).

Note that depending on the trajectory of the robot, some landmarks are
never initialised because their coordinates are not well observed. With point
features, these are the points that lie in the direction of the motion of the camera.
Similarly, with segment features, the lines which are contained in the plane on
which the camera is moving cannot be initialised.

4 Discussion

The presented approach is well suited to build an environment representation
based on 3D line segments from a single camera within a SLAM framework.

parameter description value
βd rate of the geometric series 1.3
αd ratio between mean and standard-deviation 0.2
σφ standard-deviation of each hypothesis 4◦
kσφ where 2 consecutive Gaussians meet in a

fraction of σφ

1.3

τ threshold to prune bad hypothesis 10−2

αc initial constraint noise factor 0.1
thc threshold on relative strength to trigger

constraint application
100

Table 1. Parameters of the algorithm.
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Fig. 3. Left: segments extracted in the image. Centre: segments matched on
points matches basis. Right: a 3D model obtained during a trajectory of about
16 meters around the two boxes.

In the light of simulations, it appears that the application of the Plücker
constraint is not absolutely necessary. This is due to the correlations which are
computed in the initialisation procedure. Nevertheless, this has to be veri�ed in
long terms experiments.

Future e�orts certainly include more work on the perception side, especially
the stability of the segment detection and extraction, and the matching algo-
rithm. Segment features are more invariant than points when the viewpoint
changes. This property can be very useful for loop closing and also for multi
robots cooperative localisation and mapping.
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Backend for 6-DOF SLAM
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Abstract. Treemap is a generic SLAM algorithm that has been suc-
cessfully used to estimate extremely large 2D maps closing a loop over a
million landmarks in 442ms. We are currently working on an open-source
implementation that can handle most variants of SLAM. In this paper
we show initial results demonstrating 6-DOF feature based SLAM and
closing a simulated loop over 106657 3D features in 209ms.

1 Introduction

Simultaneous Localization and Mapping (SLAM) has been a central topic in
mobile robotics research for almost two decades by now [1]. Most of the literature
is concerned with generating a 2D map with a sensor moving in the plane (3-
DOF). Only in the last few years the problem of generating a 3-D map with a
sensor moving in 3D space (6-DOF) has received considerable attention [2–5].
Such a system has important applications, for instance rescuing victims from
the remains of a collapsed building. So we expect that 6-DOF SLAM will be a
growing research area, in particular with the recently emerging 3D cameras.

Many 2D SLAM articles have been concerned with efficiency in estimating
large maps ([6] for an overview). In 6-DOF SLAM the efficiency discussion has
mainly focused on the first stages of processing in particular on 3D scan match-
ing [7]. 3D maps always contain a lot of data but up to now little attention has
been paid to 3D maps, that are by magnitudes larger than the sensor range.

We contributed the treemap algorithm [8] to this discussion in 2D SLAM. It
is designed for computing least square estimates for very large maps efficiently.
Using treemap we were able to demonstrate closing a simulated loop with one
million landmarks in 442ms [9]. On the one hand, the treemap algorithm is
sophisticated but also complicated. On the other hand, it is fairly general mainly
estimating random varianbles of arbitrary meaning. Hence our current project is
to develop an open source implementation that – as an implementation – can be
used to perform most variants of SLAM including 2D, 3D, features and/or poses,
and visual SLAM. This workshop paper reports intermediate results showing a
simulated 6-DOF SLAM experiment (3D features, no odometry) that uses the
same implementation as our previous million-landmarks (2D features, odometry,
marginalized poses) experiment. By building on the efficiency of treemap as a
backend, we where able to close a loop over n = 106657 3D features in 209ms.
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2 Local and Global Challenges for 6-DOF SLAM

Many challenges currently addressed in 6-DOF SLAM concern the first stages of
sensor processing: matching 3D scans, finding reliable features, matching them,
rejecting outliers, filtering range images or handling bearing-only initialization.
These problems are local in the sense that they affect only that part of the map
that is currently observed by the sensor. In contrast there is also the question
how this local information and its uncertainty affects the global map. The most
prominent situation is certainly closing a loop when the local information that
closes the loop leads to back-propagation of the error along the loop. The key
point, as we have argued in [6, §12], is that the local uncertainty is small but
complex and depends on the actual sensor and the detailed circumstances of
observation, whereas the global uncertainty is mostly the composition of local
uncertainties, i.e. it is large, rather simple and dominated by the map’s geometry.

This insight motivates our treemap approach. In the past it has motivated
the design of the treemap algorithm itself that exploits this locality. And now it
motivates our idea that many different SLAM variants (2D / 3D, features and/or
poses, with/without odometry) can be solved by a specific local preprocessing
plus treemap as a global least-square backend. From this perspective a large map
is mainly a matter of computation time and hence our goal is:

Whenever you can formulate your SLAM approach in a least-square
framework such that it works for small maps, you can use treemap as a
backend to make it work for large maps.

The following section gives the overall idea of the treemap algorithm from a
general probabilistic perspective. A more extensive presentation as well as the
concrete Gaussian implementation can be found in [9, 8].

3 The Treemap Algorithm

Imagine the robot is in a building that is virtually divided into two parts A and
B. Now consider: If the robot is in part A, what is the information needed about

B? Only few of B’s features are involved in observations with the robot in A. All
other features are not needed to integrate these observations. So probabilistically
speaking, the information needed about B is only the marginal distribution of
features of B also observed from A conditioned on observations in B.

The idea can be applied recursively by dividing the building into a binary
tree of regions and passing probability distributions along the tree (Fig. 1).
The input to treemap are observations assigned to leaves of the tree. They are
modeled as distributions p(X |zi) of the state vector X , i.e. of feature positions
and robot poses, given some measurement zi. With respect to the motivating
idea, nodes define local regions and super-regions. Formally, however, a node n

just represents the set of observations assigned to leaves below n without any
explicit geometric definition. During the computation, intermediate distributions
pM
n

and pC
n

are passed through the tree and stored at the nodes, respectively.
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Fig. 1. Data flow view of the prob-
abilistic computations performed by
treemap. The leaves store the input
pI
n
. During updates (black arrows), a

node n integrates (�) the distribu-
tions pM

n$
and pM

n%
passed by its chil-

dren. The result is factorized ( M©) into
a marginal pM

n
passed up and a con-

ditional pC
n

stored at n. To compute
an estimate (gray arrows), each node
n receives a distribution pn↑

from its
parent, integrates (�) it with the con-
ditional pC

n
, and passes the result pn

down. In the end, estimates x̂n are
available at the leaves.

A feature is passed in distributions pM
n

from the leaves where it is involved,
up to the least common ancestor of all these leaves. There it is marginalized
out and finally stored in pC

n
. So the distribution pM

n
passed by a node contains

those features involved in leaves below n but also involved above n. An estimate
is computed recursively down the tree. A node receives an estimate for the
features in pM

n
and combines it with the conditional PC

n
stored at n to compute

an estimate for the features marginalized out there which is in turn passed down.
Figure 2 shows the Bayesian justification for this approach: For each node n

the features X [n:X ↓↑] and measurements z[n:X ↓↑] only above n are conditionally
independent from the features X [n: ↓X ↑] and measurements z[n: ↓X ↑] only below
n given the features X [n: ↓↑] involved at the same time above and below n.

It should be noted, that the process of passing distributions along the tree is
exact. The only approximations are linearization when computing the input pI

n

and sparsification needed when old robot poses are marginalized out.

4 Different Variants that could be Supported

In 2D SLAM there are mostly two variants used. The first is consistent pose

estimation where 3-DOF poses are estimated from 3-DOF links derived from
odometry and scan matching. The second is the classical variant with 2D point
features (sometimes also 2-DOF lines) and 3-DOF poses where old poses are
marginalized out. This requires sparsification, an additional approximation to
preserve locality during marginalization. We used this variant in our million-
landmarks experiment.

In 6-DOF SLAM more variants are possible. Using 3D scan matching [2]
one can perform 6-DOF consistent pose estimation. In contrast to 2D SLAM
usually no odometry is available. This gives rise to a very simple variant, where
poses are marginalized out immediately. Since there is not odometry, sparsity is
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Fig. 2. Bayesian View. In this example, observations z1...7 provide information about
the features Xa...f. The arrows and circles show this probabilistic input as a Bayes
net with observed nodes in gray. The dashed outlines illustrate the view of a single
node n. It divides the tree into three parts, left-below $, right-below % and above ↑.
Hence the observations z are disjointly divided into z[n: $] = z1...2, z[n: %] = z3...4

and z[n: ↑] = z5...7. The corresponding features x[n: $] = Xa...b, x[n: %] = Xb...d and
x[n: ↑] = Xd...f however overlap (X[n: $%] = Xb, X[n: ↑%] = Xd). The key insight is
that X[n: ↓↑] = X[n: $↑ ∨ %↑] = Xd separates the observations z[n: ↓] and features
X[n: ↓X ↑] below n from the observations z[n: ↑] and features X[n:X ↓↑] above n, so both
are conditionally independent given X[n: ↓↑]. The notation follows [8].

maintained and no sparsification is needed. Essentially, this means, that each set
of observations is converted into relative information on the involved 3D point
features. This variant is presented in the experiments here.

It has a major limiation. Without odometry a small sensor blackout or too
little overlap between observations will disintegrate the map because no informa-
tion links the involved two poses anymore. Inertial sensors can help by providing
relative orientation (gyros) and absolute inclination (accelerometers). This is the
pendant of classic SLAM with 3D point features and 6-DOF poses marginalized
out later. Still, with orientation-odometry only, consecutive observations must
share one feature. Yet another variant uses the accelerometers as translation-
odometry. But when acceleration is integrated the result is relative velocity not
relative position, so the poses must be augmented by 3D velocity (9-DOF total).

With a monocular camera [4], no distance can be measured. So, while con-
sistent pose estimation can use the 5-DOF links arising from matching two im-
ages [10], additional information is needed for the overall scale. In a feature based
approach this leads to the corresponding problem of bearing-only initialization.

5 Towards an Open Source Implementation

We believe that these different variants can all be based on treemap as the
same least square backend. The main difference lies in the size of the vectors
representing features and poses, in different Jacobians for linearization, and in
the way an initial estimate can be computed for linearization. Another difference
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Fig. 3. Computation time. Time per step over number of landmarks. The final
increase in computation time happens after closing the loop.

is the control policy: Which observations are combined in one leaf? Are old poses
marginalized out? When is sparsification used for the sake of efficiency? When
are Jacobians recomputed from the original nonlinear observations?

All 6-DOF SLAM variants share the problem of parameterizing 3D orienta-
tion. We extend a technique by Castellanos [11] to 3D and use the product

Q = Q0

(

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

)(

cos β 0 sin β
0 1 0

− sin β 0 cos β

)(

1 0 0
0 cos α − sin α
0 sin α cos α

)

≈ Q0

(

1 −γ β
γ 1 −α
−β α 1

)

of a fixed orientation Q0 and three Euler rotations the angles of which are the
random variables estimated. Q0 is initialized with the current estimate so the
Euler angles only parameterize the small perturbation of the orientation and are
far from singularity. Hence they are always linearized at α = β = γ = 0 and the
linearization has the simple form shown above.

This technique also allows to reduce the linearization error caused by error in
the robot orientation. The distributions passed from a nodes children are rotated
according to the current estimate before multiplying them (Fig. 1, �) [8].

The goal of our current project is to implement all the different SLAM vari-
ants. The treemap backend is already finished with a sufficiently generic interface
so we were able to implement a driver for feature based 2D SLAM [9] in 2100 lines
of C++ code and a driver for feature based 6-DOF SLAM without odometry in
1200 lines of code. The following section shows results for the latter.

6 Experimental Results

In our simulated experiment the robot moves through a 20 story building with
features on the rooms walls (Fig. 4). Then it crosses a bridge on the 19th floor
into another 20 story building and maps that building too. Finally it returns
to the starting position and closes a loop over all feature. The overall map has
n = 106657 features and m = 5319956 observations from p = 488289 poses. Poses
are not represented in the map. Computation time was at most 209ms (Fig. 3).

7 Conclusion and Outlook

We have demonstrated that that the treemap algorithm in the same generic
implementation can be used to solve both 2D and 3D feature based SLAM
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Fig. 4. 6-DOF SLAM map. before and after closing the large loop (between the two
building on the ground level) over all n = 106657 features. A 3D animations of the
growing 3D map and the previous 2D million-landmarks simulation can be downloaded
from our web site www.informatik.uni-bremen.de/~ufrese/.

(without odometry) with high efficiency. Future work includes implementing the
remaining SLAM variants, integrating a solution to the bearing-only initializa-
tion problem and implementing a 3D variant of the rotation technique used to
reduce linearization error.

We then plan to publish the implementation as an open source library.
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Abstract. We motivate and present a SLAM system capable to deal
with data from 3D segment-based vision system. These are widespread
systems in robotics. Reliable world mapping in large indoor environments
is demonstrated by the experimental activity.

1 Introduction

Simultaneous Localization and Mapping (SLAM) deals with the automatic con-
struction of a geometric model of environment [1]. The main issues are related
to errors in robot localization and in mapping the world; as a result the world
model is affected by geometric inconsistencies. The absence of a reliable SLAM
functionality prevents practical use of mobile robotics technology whenever an
a priori and up-to-date map of the workspace is not available, i.e. nearly always,
as executive drawings (if available) differ from reality, day-to-day usage of space
introduces changes such as un-fixed furniture, temporary obstacles, etc.

Many approaches are known in the literature of SLAM systems; some of
the most known are Fastslam [2], which decompose the problem in two: robot
localization and estimation of the position of the world features and then makes
use of a modified particle filter for the estimate of the robot pose and EKF for the
map. Graphical SLAM [3] represents the world map as a graph where nodes carry
information about the pose of each world feature and the robot; on the edges
are the relationship between nodes. Many other approaches base on EKF for
building a geometrically consistent map. An interesting technique is Hierarchical
SLAM [4], which is based on EKF, Mahalanobis distance, interpretation trees,
and hierarchical decomposition of the data structure (which allows a reduction
in complexity by limiting the items involved in the most cumbersome SLAM
phases. This approach has been used with many sensing systems (sonar, laser
range finders, etc.) and also with a 3D vision system like the one we used, but
with data obtained by projecting on the floor the 3D data.

In this paper we first shortly recall in Section 2 the specific aspects of our
sensed data, and then introduce (Section 3) our 3D-6DoF Hierarchical SLAM
work. We then illustrate in Section 4 the experimental activity performed.
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2 Sensor Data

Some robot activity requires a full 3D knowledge of the observed environment
features; a few examples are: tables legs or steps which constrain motion; door
handles and fire extinguishers help in localization; cleaning has to be performed
under tables and chairs; fire extinguishers have to be avoided; books to be moved
are on top of tables, etc. In Figure 1a the robot can navigate/clean under the
table, but not under the seat. It is therefore relevant to map the real 3D robot
workspace, but most of these items are not 3D-perceivable with 2D polar map
sensors like LRFs or omnidir. vision. Some existing work dealing with 3D data
bases on 3D LRFs [5], but these devices provide just geometric data, which makes
difficult other robot tasks. An example could be the semantic classification of
places [6], which are required for a real indoor service robot. Even though we are
here proposing to use just the geometry provided by 3D vision systems (because
we are working with the geometric task of map building), we think that the full
richness of vision systems output is necessary for other tasks. On the other hand,
it is difficult to put many sensing systems on the same robot, typically because
of the cost limitations, like in consumer-level robotics. These considerations are
our main motivations for a vision-only 3D-data-based SLAM approach.

The sensing system we use gives out 3D segments, and it is based on the
trinocular approach [7]. It deals with segments since the very first processing
step. Hence it looks for 2D segments in the image, and then for correspondences
between the different images. The last step is the computation of the parameters
of the 3D segment, represented by the 3D coordinates of their endpoints. In
Figure 1b, D is the 3D scene segment, Ci and di are respectively the projection
center and the projection of D on image i. Cameras are calibrated altogether
with their covariance matrix so that 3D segment endpoints can be given out
altogether with an associated covariance matrix, to represent the measurement
uncertainty as a normal probability distribution. Such systems date a long time
ago and are quite widespread in the computer vision and robotics communities.
Our implementation differs from the original only in the use of the Fast Line
Finder [8] in the polygonal approximation phase.

3 3D-6DoF Hierarchical SLAM

In the notation kD-lDoF SLAM, the first item (k) refers to the dimensionality of
the data used for building the world model. We use 3D data from the perception
system mentioned before. The second item (l) refers to the dimensionality of
the observer pose. We model the pose as a full rigid-body transformation, i.e. a
6DoF pose. The whole system is a 3D-6DoF SLAM system, like the one in [5]. On
the other hand, the system in [9], which is also based on data from a trinocular
system, because of the projecting of data on the floor, is a 2D-3DoF SLAM
system. This is a quite common approach in indoor mobile robotics, where the
robot is moving on a supposedly flat floor, and it looks reasonable to represent
the robot pose with a < x, y, ϑ > triplet. Our past experience shows that such
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(a) (b)

Fig. 1. (a) Cleaning under table/seat requires a 3D understanding of the free space.
(b) 3D segment-based reconstruction for a trinocular stereoscopic system.

flatness hypothesis is not realistic and that even with small floor imperfections
a complete pose representation, i.e. 6DoF, is of great advantage even in indoor
SLAM. In previous work we showed that a higher accuracy can be obtained in
pose recovery from images of a scene if a complete 6DoF model of the pose is
used [10]. We showed also [11] that a complete, i.e. more realistic, modelling
of uncertainties turns also into higher accuracies. In other words, un-modelled
uncertainties, i.e. use of deterministic values just due to modelling laziness, bias
the estimates. The application scenario in [11] was object localization. We are
therefore claiming that a complete (and realistic) modelling of the reality, i.e.
6DoF instead of 3DoF for the robot pose, is of great advantage even in an indoor
SLAM scenario.

3.1 Views and Submaps

A view is the set of 3D segments given out in one activation of the perception
system. Each segment endpoint is a triple of coordinates, its uncertainty is a 6×6
covariance matrix. Each local map, or submap, is the result of the combination
of some views. It contains an estimate of each world feature, i.e. segment, as the
result of possibly many observations of it, altogether with the estimate of the
robot pose. These data are referred to the same reference frame, which is called
“base reference” of the submap. Each submap is therefore a representation of
a part of the environment. An important property of submaps is the stochastic
independence with respect to other submaps.

At first a new submap is initiated with the output of the perception system.
The base reference is put on the current robot pose. The uncertainty on the
base reference is null [12]. After some motion the perception system is activated
again and a new view generated. The integration of views processing, for details
see [13], combines the data in the new view with the data in the submap, e.g.
creating a single instance of a world feature from the (possibly) two measures
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(submap and view) available. Odometry plays a role here because it gives an
estimate of the motion. The processing is based on EKF; the state is the union
of the vectors of the features and the 6DoF robot pose. Associations are used to
update the state. The robot pose, being part of the state, is updated according to
the new view data; on long motion sequences this helps limiting to some extent
the cumulative odometric errors, see Section 4.

This process is repeated as long as some termination criteria are false. Then
the submap is closed and a new submap is initiated at the current robot pose.

3.2 Global Map and Loop Closure

The global map maintains the relationships between submaps as an oriented
graph; submaps are the nodes, while the edges represent the spatial relationships
between the base references of two submaps, which are therefore considered
independent in the features. When closing a submap (i), the last robot pose (x)
becomes the base reference of the new submap (j). This pose (xi

j), with respect
to the closed submap base reference, is stored in the graph edge connecting the
two submaps.

The loop closure process is a complex activity that involves many steps.
The first is obviously Loop Detection, i.e. detecting a submap close to the one
just closed, that is involved in a loop closure. Once a loop has been detected
it is necessary to perform Data Association to extract common features. This
is obtained by a procedure that seeks an hypothesis H that connects each fea-
ture in the first submap to the (possibly) corresponding feature in the second
submap. This hypothesis is used to determine both robot and features poses in
the submaps. There are different approaches to find H; we use an interpretation
tree, as done in [4], exploiting an adapted RANSAC algorithm, which bases on
a version of the joint compatibility test [9], adapted to the 3D-6DoF problem.
Once data-associations have been found, it is possible to perform Robot Relo-

cation and Local Map Joining, i.e. to estimate the spatial relationship between
the two submaps and thus join the two w.r.t. a common reference frame, there-
fore creating a single submap. The robot pose is changed w.r.t. the new reference
frame as well. Loop Closure is the final step in global map building, which allows
to reduce the errors in the spatial relationships between the submaps in the loop.
Link relaxation in loop closure has been re-formulated as a maxima a-posteriori
estimate of all base reference poses under the loop constraint h(x) = 0. To
solve this minimization problem we used a Sequential Quadratic Programming
approach, similar to what done in [4], which is derived from the Kuth-Tucker
equations and has been adapted to the 3D-6DoF problem.

4 Experimental Activity

For the experimental activity we used a mobile robot from Robosoft which com-
putes odometry as a 3DoF pose; this datum reaches a PC via serial line. On
the PC we have an Eltec frame grabber capable to grab three 704x558x8 pixels
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(a) (b) (c) (d) (e)

(f)

Fig. 2. (a) Odometric travel superimposed to the environment planimetry. (b) Odo-
metric error ellipses (±3σ), with view id. (c) Odometric travel (full) superimposed to
the base references of the submaps (circles connected by lines); notice the larger accu-
racy provided by fusion of views. (d) Bounding boxes of last (darker) and first (lighter)
submaps. (e) The base references of the submaps after graph relaxation, compare with
the base references in (c) or (d). (f) A 3D view of the 6DoF-pose final reconstruction;
the solid-circle line is the same as in (e).

images at the same time. Each channel of the frame grabber is connected to
a Sony XC75CE camera. Cameras have been calibrated with a standard DLT
approach. The robot has been moved, by hand due to a servo-amplifier fail-
ure, inside the 4th floor of building U7, Univ. Milano - Bicocca, Milano, Italy.
Distances between consecutive robot poses, i.e. views, were about 0.05m. The
overall distance travelled has been about 200m. In Figure 2a the odometric travel
is shown, altogether with the environment planimetry. The odometric error is
modelled as zero mean Gaussian, and the propagation of this error is shown in
Figure 2b with the usual 99% ellipses; notice that the actual, i.e. first, poses are
in good agreement with the uncertainty propagated up to the last ones. Submap
termination is currently set on the cardinality of the features in the submap;
the value used in the reported experiment is 50. In Figure 2c the odometric
travel is superimposed to the base references of the submaps, i.e. what could
be considered as the overall result of the integration of views processing. This
figure shows that the integration of views gives a large increase in accuracy, even
though this is not enough for obtaining a geometrically consistent map. When a
submap is closed loop-detection is activated; in Figure 2d the bounding boxes of
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the first and last submaps, i.e. the ones for which a loop is detected, are shown.
On these two submaps Robot Relocation and Local Map Joining are applied. At
the end the two submaps are fused together in a single submap. The geometric
consistency is still not attained at this stage. Loop Closure distribute the errors
along the whole set of submaps, i.e. relative poses of submaps. The result of
such iterative non-linear optimization (graph relaxation) is shown, in terms of
base references, in Figure 2e. A 3D view of the 6DoF-pose final reconstruction
is presented in Figure 2f.

5 Conclusions

We presented a SLAM system capable to deal with data from 3D segment-based
vision system. These are widespread systems in robotics, but SLAM systems
basing on them are not common in the literature. Reliable world mapping in large
indoor environments is demonstrated by the experimental activity presented.
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Abstract. 6D SLAM (Simultaneous Localization and Mapping) or 6D
Concurrent Localization and Mapping of mobile robots considers six di-
mensions for the robot pose, namely, the x, y and z coordinates and the
roll, yaw and pitch angles. Robot motion and localization on natural sur-
faces, e.g., when driving with a mobile robot outdoor, must regard these
degrees of freedom. 3D (6 DOF) scan matching, combined with a heuris-
tic for closed loop detection and a global relaxation method, results in
a highly precise mapping system for outdoor environments. The mobile
robot Kurt3D is capable to run the mapping process with its on-board
sensors and computers and is used to digitalize different environments.
This paper summarizes our previous research.

1 Introduction

Automatic environment sensing and modeling is a fundamental scientific issue
in robotics, since the presence of maps is essential for many robot tasks. Manual
mapping of environments is a hard and tedious job: Thrun et al. report a time
of about one week hard work for creating a map of the museum in Bonn for
the robot RHINO [9]. Especially mobile systems with 3D laser scanners that
automatically perform multiple steps such as scanning, gaging and autonomous
driving have the potential to greatly improve mapping. Many application areas
benefit from 3D maps, e.g., industrial automation, architecture, agriculture, the
construction or maintenance of tunnels and mines and rescue robotic systems.

The robotic mapping problem is that of acquiring a spatial model of a robot’s
environment. If the robot poses were known, the local sensor inputs of the robot,
i.e., local maps, could be registered into a common coordinate system to create a
map. Unfortunately, any mobile robot’s self localization suffers from imprecision
and therefore the structure of the local maps, e.g., of single scans, needs to be
used to create a precise global map. Finally, robot poses in natural outdoor
environments necessarily involve yaw, pitch, roll angles and elevation, turning
pose estimation as well as scan registration into a problem with six mathematical
dimensions.

2 State of the Art

State of the art for metric maps are probabilistic methods, where the robot has
probabilistic motion models and uncertain perception models. Through integra-
tion of these two distributions with a Bayes filter, e.g., Kalman or particle filter,
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it is possible to localize the robot. Mapping is often an extension to this esti-
mation problem. Beside the robot pose, positions of landmarks are estimated.
Closed loops, i.e., a second encounter of a previously visited area of the envi-
ronment, play a special role here: Once detected, they enable the algorithms to
bound the error by deforming the mapped area to yield a topologically consis-
tent model. However, there is no guarantee for a correct model. Several strategies
exist for solving SLAM. Thrun surveys existing techniques, i.e., maximum likeli-
hood estimation, expectation maximization, extended Kalman filter or (sparsely
extended) information filter SLAM [10].

SLAM in well-defined, planar indoor environments is considered solved, but
6D SLAM still proposes a challenge, since several strategies become infeasible,
e.g., with 6 degrees of freedom the matrices in Kalman or information filter
SLAM grow more rapidly and a multi hypothesis approach would require too
many particles. Therefore, 3D mapping systems [2–4, 6, 7] often rely on scan
matching approaches.

3 Kurt3D

3.1 The 3D laser range finder.

The 3D laser range finder (Fig. 1) [7] is built on the basis of a SICK 2D range
finder by extension with a mount and a small servomotor. The 2D laser range
finder is attached in the center of rotation to the mount for achieving a controlled
pitch motion with a standard servo.

The area of up to 180◦(h)×120◦(v) is scanned with different horizontal (181,
361, 721) and vertical (128, 256, 400, 500) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range finder (rotating mirror device).
Planes with more data points, e.g., 361, 721, duplicate or quadruplicate this
time. Thus a scan with 181 × 256 data points needs 3.4 seconds. Scanning the
environment with a mobile robot is done in a stop-scan-go fashion.

3.2 The mobile robot.

Kurt3D (Fig. 1) is a mobile robot with a size
of 45 cm (length) × 33 cm (width) × 29 cm
(height) and a weight of 22.6 kg. Two 90 W
motors are used to power the 6 skid-steered
wheels, whereas the front and rear wheels have
no tread pattern to enhance rotating. The core
of the robot is a Pentium-Centrino-1400 with
768 MB RAM and Linux.

Fig. 1: Kurt3D.
4 6D SLAM

To create a correct and consistent environment map, 3D scans have to be merged
into one coordinate system. This process is called registration. If the robot car-
rying the 3D scanner were localized precisely, the registration could be done
directly based on the robot pose. However, due to the imprecise robot sensors,
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self localization is erroneous, so the geometric structure of overlapping 3D scans
has to be considered for registration. As a by-product, successful registration
of 3D scans relocalizes the robot in 6D, by providing the transformation to be
applied to the robot pose estimation at the recent scan point.

Kurt3D’s SLAM algorithm consists of four steps, that are explained in the
following subsections.

4.1 Odometry extrapolation

Thh odometry is extrapolated to 6 degrees of freedom using previous registration
matrices, i.e., the change of the robot pose ∆P given the odometry information
(xn, zn, θy,n), (xn+1, zn+1, θy,n+1) and the registration matrix R(θx,n, θy,n, θz,n)
is calculated by solving:
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4.2 Calculating Heuristic Initial Estimations for ICP Scan Matching

For the given two sets M and D of 3D scan points stemming from the 3D scans,
our heuristic computes two octrees based on these point clouds. The octrees rigid
transformations are applied to the second octree, until the number of overlapping
cubes has reached its maximum. The transformations are computed in nested
loops. However, the computational complexity is reduced due to the fact that
we limit the search space relative to the octree cube size. Details can be found
in [4].

4.3 Scan Registration

We use the well-known Iterative Closest Points (ICP) algorithm to calculate a
rough approximation of the transformation while the robot is acquiring the 3D
scans [1]. The ICP algorithm calculates iteratively the point correspondence. In

Fig. 2. Left: Two 3D point clouds. Middle: Octree corresponding to the black point
cloud. Right: Octree based on the blue points.
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each iteration step, the algorithm selects the closest points as correspondences
and calculates the transformation (R, t) for minimizing the equation

E(R, t) =

Nm
∑

i=1

Nd
∑

j=1

wi,j ||mi − (Rdj + t)||
2
, (1)

where Nm and Nd, are the number of points in the model set M or data set
D, respectively and wji are the weights for a point match. The weights are
assigned as follows: wji = 1, if mi is the closest point to dj within a close limit,
wji = 0 otherwise. The assumption is that in the last iteration step the point
correspondences, thus the vector of point pairs, are correct.

4.4 Loop Closing

After matching multiple 3D scans, errors have accumulated and loops would
normally not be closed. Our algorithm automatically detects a to-be-closed loop
by registering the last acquired 3D scan with earlier acquired scans. Hereby we
first create a hypothesis based on the maximum laser range and on the robot
pose, so that the algorithm does not need to process all previous scans. Then we
use the octree based method presented in section 4.2 to revise the hypothesis.
Finally, if a registration is possible, the computed error, i.e., the transformation
(R, t) is distributed over all 3D scans.

4.5 Model Refinement

Based on the idea of Pulli we designed the relaxation method simultaneous

matching [7]. The first scan is the masterscan and determines the coordinate
system. It is fixed. The following three steps register all scans and minimize the
global error, after a queue is initialized with the first scan of the closed loop:

1. Pop the first 3D scan from the queue as the current one.
2. If the current scan is not the master scan, then a set of neighbors (set of all

scans that overlap with the current scan) is calculated. This set of neighbors
forms one point set M . The current scan forms the data point set D and is
aligned with the ICP algorithms. One scan overlaps with another iff more
than p corresponding point pairs exist. In our implementation, p = 250.

3. If the current scan changes its location by applying the transformation
(translation or rotation) in step 2, then each single scan of the set of neigh-
bors that is not in the queue is added to the end of the queue. If the queue
is empty, terminate; else continue at step 1.

In contrast to Pulli’s approach, our method is totally automatic and no inter-
active pairwise alignment has to be done. Furthermore the point pairs are not
fixed [5]. The accumulated alignment error is spread over the whole set of ac-
quired 3D scans. This diffuses the alignment error equally over the set of 3D
scans [8].
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5 Results and Conclusions

The proposed methods have been tested on various data sets, including test runs
at RoboCup Rescue and ELROB. Fig. 3 show two closed loops. 3D animations
of the scenes can be found at http://kos.informatik.uni-osnabrueck.de/

download/6Dpre/ and http://kos.informatik.uni-osnabrueck.de/down-

load/6Doutdoor/.The loop in the left part of Fig. 3 was closed manually, whereas
the right loop was detached automatically.

These large loops require an reliable robot control architecture for driving
the robot and efficient 3D data handling and storage methods. In future work
we will tackle the emerging topic of map management.
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