Eine
Rotationsmatrix kann durch drei Euler Winkel
, die einer Drehung um die und
-Achse entsprechen, ausgedrückt werden [20]. Die
orthonormale Matrix wird durch
Damit ergibt sich die Rotationsmatrix als
Bei der Darstellung einer Rotationsmatrix mittels Euler-Winkel ist zu
beachten, dass die Reihenfolge der Multiplikationen in
(3.1) eine entscheidende Rolle spielt: Das Ergebnis
einer Drehung hängt im Allgemeinen davon ab, um welchen Euler Winkel zuerst
rotiert wird.